

Training Material for Balances (2) Prepared by R&D Division 1

A&D Company, Limited

Contents

• Measuring Repeatability, Linearity & Sensitivity Drift - P.3

_	Specifications of GX-2000	P.4
—	Repeatability	P.5
—	Linearity	P.10
	Sensitivity Drift	P.12

Measuring Repeatability, Linearity & Sensitivity Drift

Specifications of GX-2000

Weighing Capacity	2100g	
Minimum Weighing Value	0.01g	
(1 digit)		
Repeatability	0.01g	
(Standard Deviation)		
Linearity	±0.02g	
Sensitivity Drift	±2ppm/°C	
$(10 \sim 30^{\circ}C)$	(Automatic self calibration is not used)	

- Repeatability indicates the variation in measurement when the same mass is loaded several times. Repeatability is expressed using standard deviation (σ : sigma).
- As the repeatability of GX-2000 is 0.01g, when a 2kg mass is loaded repeatedly, the results will be*
 - 1999.99g ~ 2000.01g with the probability of 68% (Mean $\pm 1\sigma$)
 - 1999.98g ~ 2000.02g with the probability of 95% (Mean $\pm 2\sigma$)
 - 1999.97g ~ 2000.03g with the probability of 99.7% (Mean $\pm 3\sigma$)

* supposing that the mean value is 2000.00g

Normal Distribution

Calculating Repeatability (σ)

Formula: Standard Deviation $\sigma_{n-1} = \sqrt{\frac{\sum (\text{Measured Value - Mean})^2}{\text{Number of Measurements - 1}}}$

Ex) We measured a 2kg mass five times with GX-2000 (minimum weighing value 0.01g). The results were as follows:

1st	2000.01g
2nd	2000.00g
3rd	1999.98g
4th	1999.99g
5th	2000.02g

	Measured	Minimum Weighing
	Value	Value (digit)
1st	2000.01g	1 dig
2nd	2000.00g	0 dig
3rd	1999.98g	-2 dig
4th	1999.99g	-1 dig
5th	2000.02g	2 dig
Mean	2000.00g	0 dig

Measured Value - Mean	(Measured Value - Mean) ²
0.01g	0.0001
0.00g	0.0000
-0.02g	0.0004
-0.01g	0.0001
0.02g	0.0004

As the minimum weighing value of GX-2000 is 0.01g, 1 digit = 0.01g

$$\sigma_{n-1} = \sqrt{\frac{\sum (\text{Measured Value} - \text{Mean})^2}{\text{Number of Measurements} - 1}}$$

$$\sum$$
 (Measured Value – Mean)² = 0.0010

 $\frac{\sum (\text{Measured Value} - \text{Mean})^2}{\text{Number of Measurements} - 1} = 0.00025$

$$\sigma_{n-1} = \sqrt{\frac{\sum (\text{Measured Value} - \text{Mean})^2}{\text{Number of Measurements} - 1}} = 0.01588 = 0.016g$$

Alternatively,

Measured Value - Mean	(Measured Value -Mean) ²
1 dig	1
0 dig	0
-2 dig	4
-1 dig	1
2 dig	2

 \sum (Measured Value – Mean)² = 10

 $\frac{\sum (\text{Measured Value} - \text{Mean})^2}{\text{Number of Measurements} - 1} = 2.5$

$$\sigma_{n-1} = \sqrt{\frac{\sum (\text{Measured Value} - \text{Mean})^2}{\text{Number of Measurements} - 1}} = 1.588 \div 1.6 dig = 0.016g$$

Since the repeatability of GX-2000 is 0.01g, the performance of this balance would be **unsatisfactory**.

Linearity

- Linearity refers to the deviation in the measured value from the ideal (linear) curve between 0g and the maximum capacity.
- It is necessary to correct the slope of the measurement curve by conducting a calibration first, because the weighing results will vary depending on the acceleration of gravity at the point of use or can be influenced by temperature changes.

Linearity

- When calibrated with a 2000g weight, the measurement curve will be corrected by -0.04g at the point of 2000g.
- Likewise, it will be corrected by -0.01g, -0.02g, and -0.03g at 500g, 1000g, and 1500g respectively. The maximum linearity error after the calibration will thus be -0.02g (at 1000g).
- Since the specification of linearity for GX-2000 is $\pm 0.02g$, the performance is judged to be <u>satisfactory</u> in this case.

Sensitivity Drift

- Sensitivity drift is the increase or decrease in the measured value that occurs when the same mass is weighed at different ambient temperatures.
- The rate of variation is expressed in "ppm (Parts Per Million)."
- For example, the sensitivity drift of GX-2000 is ± 2 ppm/°C. This means that the measured value can vary by up to " $\pm 2/1,000,000$ " with a 1°C change in temperature.

Sensitivity Drift

Ex 1) We calibrated GX-2000 so that it would display 2000.00g at 20°C. If the ambient temperature later became 30°C, what would be the maximum error of measurement caused by sensitivity drift?

Measured Value (Referential Value)×(ppm/°C)× Variation in Temperature

$$2000.00(g) \times \{\pm 2(\text{ppm/°C})\} \times \{30(^{\circ}\text{C}) - 20(^{\circ}\text{C})\}$$
$$= 2000.00 \times \frac{\pm 2}{1000000} \times 10$$
$$= \pm 0.04(g)$$

This indicates that there can be a variation of up to $\pm 0.04g$ (1999.96 ~ 2000.04g) from the initial value of 2000.00g when the temperature changes by 10°C.

Sensitivity Drift

Ex 2) The following results were obtained using GX-2000. What is the sensitivity drift (ppm/°C)?

Weight	Ambient Temperature	Measured Value
2000.00~	20°C	2000.00g
2000.00g	30℃	1999.97g

$$\left(\frac{\text{Result B (after change) - Result A (before change)}}{\text{Result A (before change)}}\right) \times 100000 = (ppm)$$

$$\frac{ppm}{\text{Variation in Temperature}} = (ppm/^{\circ}\text{C})$$

$$\frac{1999.97 - 2000.00}{2000.00} \times 100000 = -15(ppm)$$

$$\frac{-15}{30-20} = -1.5(ppm/^{\circ}\text{C})$$
This satisfies the specification of sensitivity drift for GX-2000, which is $\pm 2ppm/^{\circ}\text{C}$.