
ABSTRACT
Due to growing interest in hybrid and electric vehicles, the
battery, being one of the critical components, is receiving a
lot of attention from designers and researchers. Two battery-
modeling approaches, though seemingly different, share the
same mathematical challenge of robust non-linear curve-
fitting. The two methods are battery equivalent circuit model
and battery system level thermal modeling using the linear
time-invariant (LTI) method. Both modeling approaches
involve curve-fitting testing data or data from advanced
models to identify four parameters in a circuit model
consisting of two pairs of RC elements. Such curve-fitting is
mathematically a non-linear least-squares (LS) problem.
Standard methods like the Levenberg-Marquardt (LM)
method can be used for non-linear curve-fitting, but the LM
method is known to be sensitive to initial conditions. Due to
the unique features of the two pairs of RC values in the
model, the curve-fitting problem can be reformulated into a
linear LS problem. Solution from the linear LS problem can
then be used as an initial condition for the LM method for
greater accuracy. Since the initial conditions from the linear
LS problem are already close to the minimum, the sensitivity
issue associated with the LM method is mitigated.

I. INTRODUCTION
Due to environmental concerns and the depletion of fossil
fuels, the automotive industry has invested heavily in electric
vehicles (EV) and hybrid electric vehicles (HEV). For both
types of vehicles, the battery plays a critical role in affecting
the overall vehicle performance. Numerical simulation
becomes an indispensable tool for battery designers and
researchers. Since the battery is a multi-physics application,

its simulation or modeling involves many different
disciplines, including but not limited to electrochemical
modeling, thermal modeling, electrical circuit modeling,
structural modeling, etc. Two of the modeling efforts, though
seemly different, share the same mathematical problem of
non-linear curve-fitting. One is the battery equivalent circuit
modeling and the other is battery system-level thermal
modeling.

The battery equivalent circuit model has gained popularity
among system-level design engineers due to its ease of use
and its capability of representing state-of-charge, I-V
characteristics, and dynamic behavior of a battery system
[1,2]. A commonly used equivalent circuit model consists of
an open-circuit voltage source, a resistor in series, and two
pairs of parallel resistor-capacitor (RC) elements as shown in
Fig. 1. The series resistance can be determined quite easily.
The main challenge is to identify the parameters of the two
parallel RC's through curve-fitting test data. The simplicity of
the battery equivalent circuit model and yet its satisfactory
results rely on good curve-fitting to test data to identify
values of the two RC's.

System-level thermal modeling using the linear time-
invariant (LTI) approach, originated from electronics cooling
applications [3,4], has recently been adopted successfully to
battery cooling [5, 6, 7]. This method treats the thermal
problem as an LTI system. In building a simple LTI system,
two pairs of RC network similar to those from the battery
equivalent circuit model are used [5, 6, 7]. An example of
such an LTI model with two pairs of RC network is shown in
Fig. 2. One needs to identify the values of the RC's through
curve-fitting the impulse or step response of the RC network
to that of the original thermal system.
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Fig. 1. A battery equivalent circuit model.

Fig. 2. An LTI model for battery thermal system.

For the two battery applications mentioned above, even
though the problems addressed and physics involved are quite
different, the essential mathematics involved in both cases is
non-linear curve-fitting. For general non-linear curve-fitting
problems, standard methods like the Levenberg-Marquardt
(LM) [8,9] can be used. However, the LM method is known
to be sensitive to initial conditions. Based on the unique
features of the two pairs of RC employed in the model, Jiang
[10] introduced a novel method of performing the curve-
fitting by turning the non-linear curve-fitting problem into a
linear one followed by solving a quadratic equation. While
Jiang's method works well for a lot of cases, a few issues are
observed in some applications. The current paper proposes an
improved approach to resolve the observed issues.

The paper is organized as follows. Section II formally defines
the mathematical problem. Section III introduces Jiang's
method. Section IV demonstrates the issues associated with
Jiang's method and the modifications used to improve the
method. A complete solution using modified Jiang's method
as an initial condition for the LM method is then proposed.
This hybrid approach shows improvement over Jiang's
approach and LM method used individually. Finally, Section
V is the conclusion.

II. MATHEMATICAL STATEMENT
OF THE PROBLEM
For models using Fig. 1 and Fig. 2, the RC values are
determined by curve-fitting to test data or results from other
simulation models. In Ref. [10], Jiang shows that the
analytical solution of the RC circuit starting right after the
pulse discharge is the following:

(1)

Therefore, one needs to determine the values for parameters
V10, τ1, V20, τ2 from a given set of test or simulation results.
Consider a case having m sets of data (t1, U1),…,(tm, Um)
with m>4. This process then becomes a non-linear least-
squares (LS) problem. Formally, we are seeking a local
minimizer for

(2)

where  and
. ƒi are functions defined as

follows:

(3)

where  is defined in Equ (1) with  being [V10, τ1,
V20, τ2]. For a general non-linear curve-fitting problem,
namely a general function instead of the specific form of Equ
(3), the standard LM method [8-9] can be used. However, the
performance of the LM method is sensitive to initial
conditions, which are necessary since the LM method
involves iteration. (The LM method is described briefly in
Appendix A for reference.)

Another general method is to perform the curve-fitting in the
frequency domain using vector-fitting (VF) [11,12]. This
approach involves identifying the transfer function of the
proposed model with the sampled Fourier transform of the
impulse response of the modeled system. While this is a very
powerful and general technique, it is more involved to
implement.

Because of the specific form of function U shown in Equ (1)
and salient features of test results, certain techniques have
been developed for this non-linear curve-fitting problem for
battery equivalent-circuit models. A commonly used method
makes use of the property that each of the two time constants
plays a dominant role at different stages of the battery voltage
response, and calculates the model parameters accordingly
[13]. For such a method, the process is quite manual and the
results are greatly influenced by the partition of faster and
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slower dynamics of the battery and the selection of the data
points used for the calculation. This method does not apply to
battery thermal LTI modeling since the required data property
is not possessed by battery thermal systems.

In this paper, a simple and novel method of parameter
identification is presented. It makes use of a regression
equation which is linear in variables that can be measured or
calculated from the test or other advanced models. Such a
method was originally proposed by Jiang [10]. While Jiang's
method works well for a lot of cases, there are issues
observed in some cases. Modifications are made to Jiang's
method in this paper to overcome the observed issues. After
the solution from the modified Jiang's method is obtained, it
is used as the initial condition for the LM method. The LM
method is used because results from the modified Jiang's
method do not satisfy the LS solution of the original problem,
namely Equ (2). With the combination of the modified Jiang's
method and the LM method, the final solution satisfies the LS
problem and the approach becomes less sensitive to the initial
condition since the initial condition is already close to the
optimum solution.

III. JIANG'S METHOD FOR
PARAMETER IDENTIFICATION
The starting point of Jiang's method is two functions, X and
Y, defined by the following two equations:

(4)

(5)

Substitution of U from Equ (1) into Equ (4) and (5) gives the
following expressions for X and Y, respectively,

(6)

(7)

Solving for e−t/τ1 and e−t/τ2 using Equ (1) and (6) and
substituting the results into Equ (7) gives the final expression
for Y,

(8)

 
 
 
 

When the m sets of experimental data points of (ti, Ui) are
used to evaluate t, U, X, and Y in Equ (8), one obtains m
equations with four unknowns. These m equations can be
written in a matrix form shown below,

(9)

The solution to the above equation is obtained by solving a
linear LS problem. After Equ (9) is solved, V10, τ1, V20, τ2
can be obtained by solving a quadratic equation for τ1 and τ2
and a linear set of two equations for V10 and V20. It is
interesting to note that a non-linear LS problem has been
changed to a linear LS problem using Jiang's approach.

IV. MODIFICATION OF JIANG'S
METHOD
There are a few problems observed using Jiang's method in
some cases. First of all, though not often, the matrix in Equ
(9) can be rank deficient for certain cases. This issue can be
solved quite easily by using singular value decomposition
(SVD) based LS solver rather than QR-based LS solver. So,
all linear LS problems solved in this paper use the SVD-
based LS solver. When the matrix is not rank deficient, the
SVD-based LS solver gives the same results as the QR-based
solver. When the matrix is rank deficient, the SVD-based
solver is stable and gives a least-squares and least-norm
solution.

Secondly, the method only ensures a good fit for the function
Y, not the original function U that is ultimately needed. In
some cases, a good fit for the function Y does not translate to
a good fit for the function U. Large errors of more than 100%
(in the sense of 2-norm) have been observed for the function
U even when the error for Y is quite small. Fig. 3 and 4 show
such an example. It is clear from Fig. 3 that the fit for Y is
quite good. However, the fit for U shown in Fig. 4 is rather
poor near t = 0 as indicated in Fig. 4b). This result can be
explained if one notices that the area difference between the
two curves in Fig. 4 is quite small even though the values of
the two curves near t = 0 are quite different. But Jiang's
method essentially compares the area rather than the values
for the function U. This is clear from how X and Y are defined
in Equ (4) and (5).
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Fig. 3. A result for function Y using Jiang's method

a). Zoomed-out view

b). Zoomed-in view near t = 0
Fig. 4. A result for function U using Jiang's method.

This issue can be resolved quite nicely with one observation.
From Equ (1), it is clear that V10+V20 = U0, where U0
represents the function U at t = 0. After this relation is
substituted into Equ (8), one obtains the following new
expression for Y,

(10)

By using Equ (10) rather than Equ (9), we are forcing the
sum of V10 and V20 to be the correct value of U0. This helps
avoid the issue observed near t = 0 associated with Jiang's
original approach. The corresponding matrix form for Equ
(10) is the following:

(11)

With the above modification, the fitting results for the
functions Y and U shown in Fig. 3 and 4 are repeated in Fig. 5
and 6, respectively. Visually, there is no difference for the
fitting of the function Y using the original method and the
modified one, but the improvement for the more important
function U is quite obvious near t = 0 as can be seen by
comparing Fig. 6 with Fig. 4.

Another observation with Jiang's method is accuracy. Results
from the method do not satisfy Equ (2), so it is not a LS
solution to the problem. In order to obtain the more accurate
LS solution, the LM method is used with the initial
conditions from the above modified Jiang's method.

It is worthwhile to mention that Jiang's approach only works
well with two RC pairs. When more than two pairs are used,
the counterparts of Equ (10) and (11) become too
complicated to be useful.

Fig. 5. A result for function Y using modified Jiang's
method.
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a). Zoomed-out view

b). Zoomed-in view near t = 0
Fig. 6. A result for function U using modified Jiang's

method.

As a final observation, both the original and modified Jiang's
method could generate complex (as opposed to real) solutions
for V10, τ1, V20, τ2 after the linear LS problem is solved from
Equ (9) or (11). It was observed that this happens more often
when the step response data does not reach steady-state. But
it can occur even when the step response data approach
steady-state, and this is especially true when the curve to be
fitted looks like the one shown in Fig. 7. While such a curve
may not show up in the battery circuit model, it shows up in
the LTI thermal model when cross-heating is involved. The
author has not found a method to resolve this issue within the
framework of Jiang's method. For such a curve, one can use
the LM method directly and cope with the sensitivity issue.
Results from LM method using two rather randomly selected
initial conditions are shown in Fig. 8 to demonstrate the
sensitivity issue. The first initial condition gives an error of
2.5% while the second gives an error of 7.6% (based on the
2-norm in both cases). Note that even the worse result of
using initial condition 2 might be acceptable since cross-
heating makes a small contribution to the final solution and
the curve-fitting accuracy is thus less important for these
curves from cross-heating. If higher accuracy is desired,
though, the more powerful vector-fitting method [11] in the
frequency domain can be used. For the curve shown in the
Fig. 7, fitting results from the vector-fitting method generate

a good fit as shown in Fig. 9. Such a method is robust and
does not suffer the sensitivity issue associated with time-
domain fitting using the LM method. But the vector-fitting
method is more involved. Frequency-domain fitting is beyond
the scope of this paper and will not be discussed further here.

Fig. 7. A function U due to cross heating that results in
complex V10, τ1, V20, τ2 using Jiang's method or the

improved version.

Fig. 8. Fitting results using LM method for two different
initial conditions.

Fig. 9. Fitting results using vector-fitting method.
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The results shown so far are all for battery thermal LTI
modeling. As mentioned before, this approach works just as
well for battery equivalent circuit modeling. Fig. 10 shows
curve-fitting results for the function U calculated from a
battery pulse discharge using the Newman electrochemistry
model [14, 15, 16]. Fig. 11 shows curve-fitting results for the
function U provided by A&D Technology from test results.
Note that the values for U to be fitted can be generated either
from more advanced models or from test data.

Fig. 10. A result for function U using the modified
Jiang's method. Original U values are obtained from the

Newman electrochemistry model.

Fig. 11. A result for function U using the modified
Jiang's method. Original U values are provided by A&D

Technology.

V. CONCLUSION
Two battery applications share the same mathematical
challenges of non-linear curve-fitting for parameter
identification. Non-linear curve-fitting can be solved using
the standard LM method, but the LM method is sensitive to
initial conditions. A novel method which makes use of a
regression equation that is linear in the variables that can be
measured or calculated from testing or from other advanced
models is proposed for the parameter identification. Results
from this method are then used as the initial condition for the

more accurate LM method. The combined approach makes
the method less sensitive to initial conditions compared with
using the LM method alone and more accurate than without
using the LM method.

The approach however is not without issues. The main
problem observed is that the parameters could be complex for
battery cell cross-heating curves. Fortunately, accurate fitting
for these curves is not as critical since cross-heating usually
does not contribute significantly to the final temperature
solution. If high accuracy is desired, a good fit can be
achieved by using frequency domain fitting methods, though
such methods are more involved to implement.
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Appendix A: Levenberg-Marquardt Method for Battery Curve-Fitting

Given a vector function  with m > n. We are seeking a local minimizer for

(A1)

For the battery application, the vector function is , (m > 4), whose components are defined as follows:

(A2)

where , and (ti, yi) are testing data or data from other models at m different points,

A linear approximation for  in the neighborhood of  for a small  is the following:

(A3)

where  is the Jacobian defined by:

(A4)

Inserting Equ (A3) into Equ (A1) gives the following:

(A5)

For a given , Equ (A5) is a function of . This function is defined as , shown below,

(A6)

The gradient of L is the following:

(A7)

Setting  equals to zero provides a mininizer. This is called the Gauss-Newton method, and the resulting equation is the
following:

(A8)

The above equation is equivalent to the following LS problem. Numerically, it is better to solve the following LS problem rather than
(A8).

APPENDIX
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(A9)

In the LM method, it is suggested to use a damped Gauss-Newton method. The step is defined by the following modification to Equ
(A8)

(A10)

When µ is very small, then , and the LM method goes back to the Gauss-Newton method. When µ is large,

(A11)

i.e. a short step in the steepest descent direction. So, the LM method can be thought of as a combination of the steepest descent and the
Gauss-Newton method. When the current solution is far from the minimum, the algorithm behaves like the steepest descent method,
which is slow in convergence but guaranteed to converge. When the current solution is close to the minimum, it becomes the Gauss-
Newton method.

The value for μ has to be modified based on the solution from the current iteration. The choice of initial μ value is not critical as the
solution is not sensitive to the initial value. During the iteration the size of μ can be updated by the gain ratio defined below,

(A12)

A large value of ρ indicates that , is a good approximation to , and the damping may be reduced. A small value of ρ,
including negative values, indicates that we should increase the damping factor and thereby increase the penalty on large steps. It was
demonstrated in Nielsen [17] that the following strategy in general works well,

A detailed description of the LM method can be found in [9-10, 17]. The algorithm can be summarized in the following pseudo-code.
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