

Estimation of Road Load Parameters via On-road Vehicle Testing

Dr. Rahul Ahlawata, Dr. Jürgen Bredenbeckb & Mr. Tatsuo Ichigec

^a A&D Technology, Michigan, USA

^bA&D Europe GmbH, Griesheim, Germany

^c A&D Company, Tokyo, Japan

Tire Technology Expo 2013 February 5-7, Cologne, Germany

Energy Loss in Vehicles

Losses of fuel energy in a vehicle in city usage (highway usage)

[U.S. National Academy of Science, 2006]

Energy Loss in Vehicles

Road load is define as the "...force or torque which opposes the movement of a vehicle..."

Significance of Road Load Determination

Vehicle platooning [1,2]

Roll-over prevention [3]

Energy management [4,5]

Engine certification [7]

Objective

Estimate the road load parameters of a vehicle

- Focus on rolling resistance & aerodynamic drag
- Use on-road testing of a production vehicle
- Use a novel force measurement method & compare results with traditional method(s)

Outline

1. Introduction

2. Road load fundamentals

3. Instrumentation & sample data

4. Coast down method

5. Force measurement method

6. Summary

Rolling Resistance

For a free rolling tire under no slip:

Mg: Vertical load on the tire due to sprung & unsprung mass

v_x: Tire longitudinal velocity

R_x: Rolling resistance force

ω: Tire angular speed

M_{rr}: Rolling resistance moment

R₇: Ground reaction force

r: Loaded tire radius

Aerodynamic Drag

Density of air

Frontal area of the vehicle

Coefficient of aerodynamic drag ◆

Relative velocity of the vehicle wrt the wind ←

Total Road Load

The most commonly used form of road load equation is:

$$F_{road\ load} = \begin{pmatrix} a + b \cdot v_x + c \cdot (v_{rel})^2 \end{pmatrix} + M \cdot g \cdot \sin(\theta)$$
Predominantly includes the includes the effect of rolling resistance Includes dependence

of rolling resistance on velocity & drivetrain losses

- 'b' term is not always included
- A number of other formulations exist [8], including
 - Influence of rotational inertias
 - Correction factors
 - Additional dependencies

Road Load Measurement Methods

1. Individual component measurements

testing

Aerodynamic drag: Wind tunnel testing

Grade: Road profiling

Pros: High repeatability, aids in parametric evaluation

Cons: Higher cost, may not represent real driving conditions

Road Load Measurement Methods

2. Coast-down method [8,10]

Pros: Less instrumentation

Cons: Time consuming tests, include

drivetrain losses

3. Torque measurement [9]

Pros: Drivetrain losses are excluded

Cons: Difficult to install on

production vehicle

Road Load Measurement Methods

4. Complete vehicle measurement system

On-road Vehicle Testing

Test Vehicle: FWD Mini Cooper S

Test Track: Proving ground in Tochigi, Japan

Instrumentation

Measures wind velocity & direction

6-Component Wheel Force Transducer

(Fx, Fy, Fz, Mx, My, Mz)

- Distributed force bridges with model based decomposition to get orthogonal force components
- Very low cross sensitivity, interference & temperature sensitivity and high sampling rate
- 0.1% resolution (6N or 1.8Nm)

Instrumentation

Anemometer

Measures wind velocity & direction

6-Component Wheel Force Transducer

(Fx, Fy, Fz, Mx, My)Mz)

Influence of drivetrain losses is included in this measurement

Influence of a and b terms is included in this measurement (ignoring bearing friction and wheel well aerodynamic losses)

Vehicle Instrumentation II

Laser Doppler Sensor

Measures vehicle velocity & slip angle

GPS Sensor & In-vehicle Network

Measures vehicle longitude, latitude, altitude, and ECU CAN communication

Inertial Sensor

Measures vehicle roll, pitch and yaw

Wheel Position Sensor

Measures 6 degrees of freedom of the tire

Digital Signal Processing & Acquisition

100Hz sampling (max 100kHz)

Sample Data

Sample Data

Sample Data

Outline

1. Introduction

2. Road load fundamentals

3. Instrumentation & sample data

4. Coast down method

5. Force measurement method

6. Summary

Coast-down Tests

Procedure:

- Conduct tests on a flat road with low wind conditions
- Accelerate the vehicle and put the transmission in N
- Begin coast down in a straight line
- Record vehicle velocity and vehicle velocity relative to wind as a function of time

Coast-down Tests

Procedure:

- Conduct tests on a flat road with low wind conditions
- Accelerate the vehicle and put the transmission in N
- Begin coast down in a straight line
- Record vehicle velocity and vehicle velocity relative to wind as a function of time

$$F_{road\ load} = \left(a + b \cdot v_x + c \cdot (v_{rel})^2\right) + \underbrace{M \cdot g \cdot \sin(\theta)}_{\text{flat road assumption}}$$

Flat road assumption

Coast-down Tests

Procedure:

- Conduct tests on a flat road with low wind conditions
- Accelerate the vehicle and put the transmission in N
- Begin coast down in a straight line
- Record vehicle velocity and vehicle velocity relative to wind as a function of time

$$F_{road\ load} = \left(a + b \cdot v_x + c \cdot (v_{rel})^2\right) + M \cdot g \cdot \sin(\theta)$$

$$-F_{road\ load} = M \frac{dv_x}{dt}$$

- Use linear regression to obtain coefficients a, b & c
 - Use minimization of || L ||₂
 - Verify by Simulated Annealing
- SAE J1263, J2263 and ISO 10521-1 contain more detailed procedures

Coast-down Test Results

- Front tires: Bridgestone Sneaker
- Rear tires: BridgestoneSneaker
- Estimated Values:
- a = 194.87, b = 3.87, c = 0.37

95% Confidence bounds:

a: 184 – 204

b: 2.7 - 5

c: 0.35 - 0.39

Coast-down Test Results

Validation Procedure

$$F_{road\ load} = \left(a + b \cdot v_x + c \cdot (v_{rel})^2\right)$$

During coast-down: $-F_{road\ load} = M \frac{dv_x}{dt}$

Generalized equation under all conditions (including coast-down):

Tire traction/braking
$$\Sigma F_{tb}$$
 — $F_{road\ load} = M \frac{dv_x}{dt}$
$$\Sigma F_{tb} - (a + b \cdot v_x + c \cdot (v_{rel})^2) = M \frac{dv_x}{dt}$$

$$(\Sigma F_{tb} - a - b \cdot v_x) - c \cdot (v_{rel})^2 = M \frac{dv_x}{dt}$$
 Wheel force ΣF_x = $c \cdot (v_{rel})^2 + M \frac{dv_x}{dt}$ sensor

Validation Procedure

Estimates are poor outside the coast-down region

Residual Analysis

$$\Sigma F_{x} = c \cdot (v_{rel})^{2} + M \frac{dv_{x}}{dt}$$

$$Res = \Sigma F_{x} - \left[c \cdot (v_{rel})^{2} + M \frac{dv_{x}}{dt}\right]$$

Analyze cross-correlation coefficient of residuals:

An example:

Residual Analysis

$$\Sigma F_{x} = c \cdot (v_{rel})^{2} + M \frac{dv_{x}}{dt}$$

$$Res = \Sigma F_{x} - [c \cdot (v_{rel})^{2} + M \frac{dv_{x}}{dt}]$$

Analyze cross-correlation coefficient of residuals:

Limitations of Coast-down Tests

Procedure:

- 1. A long straight flat track is needed
 - SAE procedures requires a minimum speed band of 70 to 15 mph
- Results include drivetrain losses and may not be suitable for some applications
- 3. Results are not consistent for all driving conditions, especially outside the coast-down region
 - Residuals are correlated with accelerator pedal position, steering angle,...
- 4. Predictor basis is not orthogonal giving rise to the mathematical complications due to multicollinearity
 - Estimates of a, b, c might be biased or have high variance

Outline

1. Introduction

2. Road load fundamentals

3. Instrumentation & sample data

4. Coast down method

5. Force measurement method

6. Summary

Identification using Force Method

$$\Sigma F_{x} - M \frac{dv_{x}}{dt} = c \cdot (v_{rel})^{2}$$

Use regression to identify c

c = 0.5371

Validation Test

Comparison of Coast-down & Force Method

Front tires: Bridgestone Blizzak

Rear tires: Bridgestone Sneaker

Comparison of Coast-down & Force Method

Comparison of Coast-down & Force Method

Cross-correlation of Residuals

Traction & Braking Scenarios

Assumptions:

- Small inclination and side-slip angles
- No vertical displacement of the tire
- No slip

ω

m: Mass of tire wheel assembly

J: Polar moment of inertia of tire-wheel assembly about the center of wheel hub

T: Applied torque at wheel hub

F_a: Tire-road friction force

$$J\dot{\omega} = T - F_a r - M_{rr}$$

$$F_{a} = \frac{T - J\dot{\omega} - M_{rr}}{r} = \frac{T - J\dot{\omega}}{r} - R_{x}$$

Let WFS measurements be represented as F_x , F_z and M_y

Then,
$$T = M_y, r = \frac{v}{\omega}$$
 From laser Doppler sensor

$$F_{x} = F_{a} - m\dot{v}_{x} = \frac{M_{y} - J\dot{\omega}}{r} - R_{x} - m\dot{v}_{x}$$

$$R_{x} = \frac{M_{y} - J\dot{\omega}}{r} - F_{x} - \dot{m}\dot{v}_{x}, RRC = \frac{R_{x} \times 1000}{F_{z}}$$

Determined before the experiment

Calculation of 'a' from Force Method

6 constant speed tests for each speed, 18 tests total

Assuming that wheel well aerodynamic losses are negligible at low speeds, calculate

$$a = \Sigma R_x$$
 \Rightarrow a = 271

Note: Measured value of rolling resistance is much higher than what standardized tests predict [11]

Calculation of 'b' from Force Method

$$b = \frac{\delta(\Sigma R_x)}{\delta(\Sigma \nu_x)}$$

Summary

Coast-down Method

a = 191.69, b = 2.54, c = 0.41

- $R^2 = 0.9280$
- Estimate variance is higher
- Estimation only over coast-down; road load is under-estimated for non-coast-down conditions
- Residuals are correlated with driver inputs
- Changing the tire changes 'c' substantially
- Influence of drivetrain losses is included
- Less instrumentation is needed
- Less distortion of vehicle
 aerodynamic

Force Method

a = 271, b = 0, c = 0.5371

- $R^2 = 0.9926$
- Estimation based on physics;
 variance is very low
- Estimation can be carried out during all conditions
- Correlation is significantly reduced
- Changing the tires preserves 'c' very closely
- Influence of drivetrain losses is NOT included
- More instrumentation required
- Vehicle aerodynamics are modified to a greater extent

Acknowledgements

- On-road data acquisition team:
 - Takayasu Sasaki
 - Yuuki Sakurai
 - Masaaki Banno
 - Hiroki Yamaguchi
- Kenji Sato, A&D Technology, Ann Arbor
- Dr. Michael Smith, A&D Technology, Ann Arbor

References

- 1. D.Yanakiev & I.Kanellakopoulos, "Speed Tracking and Vehicle Follower Control Design for Heavy-Duty Vehicles", Vehicle System Dynamics, Vol. 25, No. 4, 1996
- 2. D.Yanakiev & I.Kanellakopoulos, "Nonlinear spacing policies for automated heavy-duty vehicles", IEEE Transactions on Vehicular Technology, Vol. 47, No. 4
- 3. Bae, Ryu & Gerdes, "Road grade vehicle parameter estimation for longitudinal control using GPS", 2001 IEEE Intelligent Transportation Systems
- 4. C. Musardo, G. Rizzoni & B.P. Staccia, "A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management" 2005 European Control Conference
- 5. Hong Yang & Joel Maguire, "Predictive Energy Management Control Scheme for a Hybrid Powertrain System", US Patent 2011/0066308 A1
- 6. www.Carsim.com
- 7. J Fredriksson, E Gelso, M Åsbogard, M Hygrell, O Sponton, NG Vagstedt, "On emission certification of heavy-duty hybrid electric vehicles using hardware-in-the-loop simulation", Chalmers University of Technology, 2011
- 8. Karlsson, Hammarström, Sörensen & Eriksson, "Road surface influence on rolling resistance Coastdown measurements for a car and an HGV", VTI, 2011
- 9. J.Żebrowski, "Traction efficiency of a wheeled tractor in construction operations", Automation in Construction, Vol. 19, No. 2, 2010
- 10. Sandburg & Ejsmont, "Noise emission, friction and rolling resistance of car tires Summary of an experimental study", National conference on noise control engineering, Dec 3-5, 2000, Newport beach, California
 - S.K. Clark, "A handbook for the rolling resistance of pneumatic tires", 1979

More Information

Email:

Dr. Rahul Ahlawat, rahlawat@aanddtech.com

Visit our booth:

A&D Booth 2105

Thank you for your attention

