AD-4430A With Analog 4-20mA Output DIN Rail Weighing Module

INSTRUCTION MANUAL

1WMPD4003460

The manual and Marks

All safety messages are identified by the following, "WARNING" or "CAUTION", of ANSI Z535.4 (American National Standard Institute: Product Safety Signs and Labels). The meanings are as follows:

A potentially hazardous situation which, if not avoided, could result in death or serious injury.	
A potentially hazardous situation which, if not avoided, may result in minor or moderate injury.	

This is a hazard alert mark.

- This manual is subject to change without notice, at any time, to improve the product.
- □ The contents of the product specifications and this manual are subject to change without any obligation on the part of the manufacturer.
- Under the copyright laws, the software (program) described in this manual is copyrighted, with all rights reserved.
 The software may be installed into one computer and may not be installed into other computers without the prior written consent of A&D Company, Limited. Copying includes translation into another language, reproduction, conversion, photocopying and offer or loan to another person.

Teflon is a registered trademark of DuPont.

© 2017 A&D Company, Limited All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, or translated into any language in any form by any means without the written permission of A&D Company, Limited.

Contents

2. Outline and Features 6 3. Specifications 7 3.1 Analog Part (Load cell Input, A/D Converter) 7 3.2. Digital Part (Display and Keys) 7 3.3. General 7 3.3.1 Interface 7 3.3.2 Weighing Function 8 3.3.3. General 8 3.3.4. Accessories 8 3.3.5. Dimensions 9 3.4. Names (The Front Panel and Rear Panel) 10 3.5. Procedure for Connecting the Analog Output Cable 11 4. Installing the Module 12 4.1. Conditions to Install the Module 12 4.2. Power Supply 12 4.3. Connecting Load Cell Cable 13 4.4. Verifying Load Cell Cable 14 5.1. General Functions 15 5.1.2. Zero Tracking 15 5.1.3. The Tare Value and Zero Operation 16 5.1.4. Clearing the Function of the F Switch 17 5.1.5.	1. 1.1. 1.2. 1.3.	Compliance Compliance with FCC rules Compliance with European Directives Precautions for Safety Use	4 4 4 4
3. Specifications 7 3.1 Analog Part (Load cell Input, A/D Converter) 7 3.2 Digital Part (Display and Keys) 7 3.3. General 7 3.3.1 Interface 7 3.3.2 Weighing Function 8 3.3.3.3 General 8 3.3.4 Accessories 8 3.3.5 Dimensions 9 3.4 Names (The Front Panel and Rear Panel) 10 3.5 Procedure for Connecting the Analog Output Cable 11 4. Installing the Module 12 4.1 Conditions to Install the Module 12 4.2 Power Supply 12 4.3 Connecting Load Cell Cable 14 5.1 General Functions 15 5.1.1 Zero Operation 15 5.1.2 Zero Tracking 15 5.1.3 The Function of the F Switch 17 5.1.6 Customizing the Function of the R Switch 17 5.1.7 Memory Backup 18 5.1.8 The Detection for	2.	Outline and Features	6
3.1. Analog Part (Load cell Input, A/D Converter)	3.	Specifications	7
3.2. Digital Part (Display and Keys)	3.1.	Analog Part (Load cell Input, A/D Converter)	7
3.3.1 Interface 7 3.3.1 Interface 7 3.3.2 Weighing Function 8 3.3.3 General 8 3.3.4 Accessories 8 3.3.5 Dimensions 9 3.4. Names (The Front Panel and Rear Panel) 10 3.5 Procedure for Connecting the Analog Output Cable 11 4. Installing the Module 12 4.1 Conditions to Install the Module 12 4.2 Power Supply 12 4.3 Connecting Load Cell Cable 13 4.4 Verifying Load Cell Cable 14 5 Operations 15 5.1.1 General Functions 15 5.1.2 Zero Tracking 15 5.1.3 The Tare Function 16 5.1.4 Clearing the Function of the F Switch 17 5.1.5 Customizing the Function of the x Display 18 5.1.1 The Detection for the Near-Zero 18 5.1.1 Deperation Switches 24 5.3 State Diagram </td <td>3.2.</td> <td>Digital Part (Display and Keys)</td> <td>7</td>	3.2.	Digital Part (Display and Keys)	7
3.3.2 Weighing Function 8 3.3.3 General 8 3.3.4 Accessories 8 3.3.5 Dimensions 9 3.4. Names (The Front Panel and Rear Panel) 10 3.5 Procedure for Connecting the Analog Output Cable 11 4. Installing the Module 12 4.1 Conditions to Install the Module 12 4.2 Power Supply 12 4.3 Connecting Load Cell Cable 13 4.4 Verifying Load Cell Cable 14 5 Operations 15 5.1.1 General Functions 15 5.1.2 Zero Tracking 15 5.1.3 The Tare Function 16 5.1.4 Clearing the Function of the F Switch 17 5.1.6 Customizing the Function of the x Display 18 5.1.7 Memory Backup 18 5.1.8 The Detection for the Near-Zero 18 5.1.9 Upper or Lower Limit Detection Function 19 5.1.10 Digital Filter 1 and 2 (<i>Fac B5</i> and <i>Fac B5</i>) 20	3.3. 3.3.1	Interface	······ / 7
3.3.3.General83.3.4.Accessories83.3.5.Dimensions93.4.Names (The Front Panel and Rear Panel)103.5.Procedure for Connecting the Analog Output Cable114.Installing the Module124.1.Conditions to Install the Module124.2.Power Supply124.3.Connecting Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Tracking155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.18.The Detection for the Near-Zero185.19.Upper or Lower Limit Detection Function195.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.11.1.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.4.The Calibration using Actual Load ($E - 5EE$)275.4.The Calibration using Actual Load ($E - 5EE$)275.4.The Actual Load Linearization Function ($L - 5EE$)315.4.The Actual Load Linearization Function ($L - 5EE$)31 <td>3.3.2</td> <td>Weighing Function</td> <td> 8</td>	3.3.2	Weighing Function	8
3.3.4.Accessories83.3.5.Dimensions.93.4.Names (The Front Panel and Rear Panel)103.5.Procedure for Connecting the Analog Output Cable114.Installing the Module124.1.Conditions to Install the Module124.2.Power Supply124.3.Connecting Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Tracking155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.19.Upper or Lower Limit Detection Function195.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.11.1.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.4.The Calibration using Actual Load ($l - 5Et$)275.4.The Calibration using Actual Load ($l - 5Et$)205.4.The Actual Load Linearization Function ($l - 5Et$)305.4.The Actual Load Linearization Function ($l - 5Et$)31	3.3.3.	General	8
3.3.5.Dimensions	3.3.4.	Accessories	8
3.4.Names (The Front Panel and Rear Panel)103.5.Procedure for Connecting the Analog Output Cable114.Installing the Module124.1.Conditions to Install the Module124.2.Power Supply124.3.Connecting Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection function195.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($F_{DC}B_{D}$ and $F_{DC}B_{D}$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram245.4.The Calibration using Actual Load ($I = 5EI$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($I = 5EI$)305.4.5.The Calibration Correction285.4.6.The Actual Load Linearization Function ($I = 5EI$)305.4.5.The Calibration Correction285.4.6.The Actual Load Linearization Function ($I = 5EI$)305.4.5.The C	3.3.5.	Dimensions	9
3.5. Proceedule for Connecting the Arialog Output Cable 11 4. Installing the Module 12 4.1. Conditions to Install the Module 12 4.2. Power Supply 12 4.3. Connecting Load Cell Cable 13 4.4. Verifying Load Cell Cable 14 5. Operations 15 5.1. General Functions 15 5.1.1. Zero Operation 15 5.1.2. Zero Tracking 15 5.1.3. The Tare Function. 16 5.1.4. Clearing the Tare Value and Zero Operation 16 5.1.5. Customizing the Function of the F Switch 17 5.1.6. Customizing the Function of the x Display 18 5.1.7. Memory Backup 18 5.1.8. The Detection for the Near-Zero 18 5.1.9. Upper or Lower Limit Detection Function 19 5.1.10. Digital Filter 1 and 2 ($FocB5$ and $FocB5$) 20 5.1.11. The Hold Function 21 5.2. Flow Rate 23 5.3.	3.4.	Names (The Front Panel and Rear Panel)	10
4.Installing the Module.124.1.Conditions to Install the Module124.2.Power Supply124.3.Connecting Load Cell Cable.134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration using Actual Load (E^{-5EE})275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function (L^{-5EE})305.4.5.The Exerction Related to the Calibration (L^{-5EE})30	3.5.	Procedure for Connecting the Analog Output Cable	11
4.1.Conditions to Install the Module124.2.Power Supply124.3.Connecting Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncD5$ and $FncD5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram And Operation Switches245.3.2.Operation Switches255.4.The Calibration265.4.The Calibration using Actual Load (E^{-5EE})275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function295.4.5.The Euroction Palated to the Calibration (E^{-5Ee})31	4.	Installing the Module	12
4.2.Power Supply124.3.Connecting Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($Fnc B5$ and $Fnc B5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration using Actual Load ($E - 5EE$)275.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($L - 5EE$)305.4.5.The Euroction Function295.4.6.The Actual Load Linearization Function295.4.5.The Euroction Function295.4.6.The Euroction Function295.4.7.The Actual Load Linearization Function ($L - 5EE$)30	4.1.	Conditions to Install the Module	12
4.3.Verifying Load Cell Cable134.4.Verifying Load Cell Cable145.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration using Actual Load ($E - 5EE$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($L - 5EE$)305.4.5.The Actual Load Linearization Function295.4.6.The Eurotion Related to the Calibration ($L - 5EE$)305.4.5.The Eurotion Related to the Calibration ($L - 5EE$)31	4.Z. 4 3	Power Supply	12 12
5.Operations155.1General Functions155.1.1Zero Operation155.1.2Zero Tracking155.1.3The Tare Function165.1.4Clearing the Tare Value and Zero Operation165.1.5Customizing the Function of the F Switch175.1.6Customizing the Function of the x Display185.1.7Memory Backup185.1.8The Detection for the Near-Zero185.1.9Upper or Lower Limit Detection Function195.1.10Digital Filter 1 and 2 ($FncU5$ and $FncU5$)205.1.11The Hold Function215.2Flow Rate235.3State Diagram And Operation Switches245.3.1State Diagram And Operation Switches245.3.2Operation using Actual Load ($l-5ll$)275.4.3The Calibration using Actual Load ($l-5ll$)275.4.4The Actual Load Linearization Function295.4.5The Actual Load Linearization Function ($l-5lcl$)305.4.5The Eurocion Related to the Calibration ($l-5lcl$)31	4.3. 4.4	Verifying Load Cell Cable	13
5.Operations155.1.General Functions155.1.1.Zero Operation155.1.2.Zero Tracking155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($F_{DC}US$ and $F_{DC}US$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram And Operation Switches255.4.The Calibration using Actual Load ($l - 5l l$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)31	5		15
5.1.1Zero Operation155.1.2Zero Tracking155.1.3The Tare Function165.1.4Clearing the Tare Value and Zero Operation165.1.5Customizing the Function of the F Switch175.1.6Customizing the Function of the x Display185.1.7Memory Backup185.1.8The Detection for the Near-Zero185.1.9Upper or Lower Limit Detection Function195.1.10Digital Filter 1 and 2 (Fac US and Fac US)205.1.11The Hold Function215.2Flow Rate235.3State Diagram And Operation Switches245.3.1State Diagram245.3.2Operation Switches255.4The Calibration using Actual Load ($l - 5l l$)275.4.2Gravity Acceleration Correction285.4.3The Linearization Function295.4.4The Actual Load Linearization Function ($l - 5l l$)31	ວ. 51	General Functions	15 15
5.1.2.Zero Tracking.155.1.3.The Tare Function165.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 (Fac 05 and Fac 05)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration using Actual Load ($l - 5l l$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)305.4.5.The Actual Load Linearization Function ($l - 5l l$)30	511	Zero Operation	15
5.1.3.The Tare Function.165.1.4.Clearing the Tare Value and Zero Operation.165.1.5.Customizing the Function of the F Switch.175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($l-5llt$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($l-5lt$)305.4.5.The Eugriton Related to the Calibration ($l-5ltc$)31	5.1.2	Zero Tracking	15
5.1.4.Clearing the Tare Value and Zero Operation165.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($l-5ll$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($l-5ll$)305.4.5.The Eurotion Related to the Calibration ($l-5ll$)30	5.1.3.	The Tare Function	16
5.1.5.Customizing the Function of the F Switch175.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FacB5$ and $FacB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration using Actual Load ($l-5lll$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($l-5lll$)305.4.5.The Eurotion Related to the Calibration ($l-5lll$)30	5.1.4.	Clearing the Tare Value and Zero Operation	16
5.1.6.Customizing the Function of the x Display185.1.7.Memory Backup185.1.8.The Detection for the Near-Zero185.1.9.Upper or Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($Fnc05$ and $Fnc05$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($E-5EE$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($L-5EE$)305.4.5.The Euleration Related to the Calibration ($E-5EE$)31	5.1.5.	Customizing the Function of the F Switch	17
5.1.7. Memory Backup185.1.8. The Detection for the Near-Zero185.1.9. Upper or Lower Limit Detection Function195.1.10. Digital Filter 1 and 2 ($Fnc05$ and $Fnc05$)205.1.11. The Hold Function215.2. Flow Rate235.3. State Diagram And Operation Switches245.3.1. State Diagram245.3.2. Operation Switches255.4. The Calibration265.4.1. The Calibration using Actual Load ($\ell - 5\ell \ell$)275.4.2. Gravity Acceleration Correction285.4.3. The Linearization Function295.4.4. The Actual Load Linearization Function ($\ell - 5\ell \ell$)305.4.5. The Eurotion Related to the Calibration ($\ell - 5\ell \epsilon$)31	5.1.6.	Customizing the Function of the x Display	18
5.1.8. The Detection for the Near-Zero165.1.9. Upper or Lower Limit Detection Function195.1.10. Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11. The Hold Function215.2. Flow Rate235.3. State Diagram And Operation Switches245.3.1. State Diagram245.3.2. Operation Switches255.4. The Calibration265.4.1 The Calibration using Actual Load ($E-5EE$)275.4.2 Gravity Acceleration Correction285.4.3 The Linearization Function295.4.4 The Actual Load Linearization Function ($L-5EE$)305.4.5 The Eurotion Pelated to the Calibration ($E-5EE$)31	5.1.7.	The Detection for the Neer Zere	18
5.1.5.Opper of Lower Limit Detection Function195.1.10.Digital Filter 1 and 2 ($FncB5$ and $FncB5$)205.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($E - 5EE$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($L - 5EE$)305.4.5.The Eurotion Related to the Calibration ($E - 5Ee$)31	5.1.0. 5.1.0	Lipper or Lower Limit Detection Function	10 10
5.1.11.The Hold Function215.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($[-5E]$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($[1-5E]$)305.4.5.The Euleration Related to the Calibration ($[-5E]$)31	5 1 1	Digital Filter 1 and 2 (E_{0} , D_{1} , and E_{0} , D_{1})	20
5.2.Flow Rate235.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($\ell - 5\ell \ell$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($\ell - 5\ell \ell$)305.4.5.The Euleration Related to the Calibration ($\ell - 5\ell \epsilon$)31	5.1.1	1. The Hold Function	21
5.3.State Diagram And Operation Switches245.3.1.State Diagram245.3.2.Operation Switches255.4.The Calibration265.4.1.The Calibration using Actual Load ($\xi - 5\xi \xi$)275.4.2.Gravity Acceleration Correction285.4.3.The Linearization Function295.4.4.The Actual Load Linearization Function ($\xi - 5\xi \xi$)305.4.5.The Euleration Related to the Calibration ($\xi - 5\xi \xi$)31	5.2.	Flow Rate	23
5.3.1. State Diagram.245.3.2. Operation Switches255.4. The Calibration265.4.1. The Calibration using Actual Load ($[-5Eb]$).275.4.2. Gravity Acceleration Correction285.4.3. The Linearization Function295.4.4. The Actual Load Linearization Function ($l-5Eb$).305.4.5 The Euleration Related to the Calibration ($[-5Eb]$).31	5.3.	State Diagram And Operation Switches	24
 5.3.2. Operation Switches	5.3.1.	State Diagram	24
5.4. The Calibration 26 5.4.1. The Calibration using Actual Load ([-5Ε]) 27 5.4.2. Gravity Acceleration Correction 28 5.4.3. The Linearization Function 29 5.4.4. The Actual Load Linearization Function (L-5Ε) 30 5.4.5. The Euleration Related to the Calibration (L-5Ε) 31	5.3.2.	Operation Switches	25
 5.4.1. The Calibration using Actual Load (L-5EE)	5.4.	The Calibration	26
 5.4.3. The Linearization Function	5.4.1. 510	Gravity Acceleration Correction	21 20
5.4.4. The Actual Load Linearization Function (L-5EL)	543	The Linearization Function	20 29
$5.4.5$ The Eulertein Related to the Calibration ($5-E_{RC}$) 31	5.4.4	The Actual Load Linearization Function (L-SEL)	30
	5.4.5	The Function Related to the Calibration $(L - F_{\Pi C})$	31

5.4.6.	The Function Related to the Linearization Function ($L - F_{DC}$)	35
5.4.7.	Error Codes for the Calibration ([Er)	36
5.4.8.	Adjustment of the Load Cell Output	36
5.5.	The List of General Functions	37
5.5.1.	The Procedure to Store New Parameters	37
5.5.2.	The Basics Function (Fnc F)	38
5.5.3.	The Hold Function (HL d F)	39
5.5.4.	The Flow Rate Function (Fr F)	40
5.5.5.	The Control I/O Function (41
5.5.6.	The Standard Serial Output Function (<i>[L F</i>)	42
5.5.7.	The Analog Output Function (\Re_{n} F)	43
6. In	terface	44
6.1.	Analog Output	44
6.1.1.	Analog Output Diagram	44
6.1.2.	Setting Magnification of Analog Output	45
6.2.	Control I/O	46
6.3.	Standard Serial Output (Current Loop)	47
6.3.1.	Data format of Serial Output	47
6.3.2.	Transfer Mode of Serial Output	48
6.4.	USB	49
6.4.1.	Format	49
6.4.2.	Monitoring the Function Setting	49
6.4.3.	Storing the Function Setting	50
6.4.4.	Monitoring the Whole Function Settings	50
6.4.5.	Monitoring Each Piece of Data	50
7. M	aintenance	51
7.1.	Error Messages	51
7.2.	Check Mode	52
7.2.1.	Entering to the Check Mode	52
7.2.2.	Verifying the Switch Operation	52
7.2.3.	Checking the Control I/O	52
7.2.4.	Checking the Standard Serial Output	53
7.2.5.	Checking the Analog Output (IOUT1 and IOUT2)	53
7.2.6.	Monitoring the A/D Converter (for Load Cell Output)	53
7.2.7.	Monitoring the Internal Value	53
7.2.8.	Monitoring the Program Version	53
7.2.9.	Monitoring the Serial Number	53
7.2.10.	Monitoring the Checksum of the Program	53
7.2.11.	Monitoring the Checksum of an Internal FRAM	53
7.2.12.	Displaying Function Parameters for the Calibration ($[-FO] + \sim 28$)	53
7.3.	Initializing Parameters	54
7.3.1.	Initializing Mode for RAM and Function Parameters	54
7.3.2.	Initializing the Whole Data	54
7.4.	Verifying the Load Cell Connections (DIAGNOS)	55
7.4.1.	Guideline to Verify the Load Cell Connections	55
7.4.2.	Verifying Load Cell Connections with Switch Operation	56
7.4.3.	Verifying Using the Control I/O	56

7.4.4.	Display and Output of Verification	56
7.5.	Verifying the Load Cell Connections Using Multimeter	57
7.5.1.	Check List of the Load cell Connections	57
7.6.	The Parameter List For The Function	59
7.6.1.	The Calibration Function ([Fnc)	59
7.6.2.	The Linearization Function (L-Fnc)	60
7.6.3.	The Basics Function (Fnc F)	61
7.6.4.	The Hold Function (HLd F)	62
7.6.5.	The Flow Rate Function (F_{F} , F)	62
7.6.6.	The Control I/O Function (63
7.6.7.	The Standard Serial Output Function (<i>L F</i>)	64
7.6.8.	The Analog Output Function (Ron F)	65

Illustrations

Illustration 1	Dimensions	9
Illustration 2	Front panel & rear panel	10
Illustration 3	Mounting the module	10
Illustration 4	Cables	12
Illustration 5	Load cell connections (6-wire connection)	13
Illustration 6	Load cell connections (4-wire connection & direct connection)	14
Illustration 7	Peak hold / Averaging hold	22
Illustration 8	State diagram	24
Illustration 9	Gravity acceleration graph	29
Illustration 10	Digital linearization	29
Illustration 11	Load cell output adjustment	
Illustration 12	Wire name of load cell	55
Illustration 13	Connection check of load cell	57

1. Compliance

1.1. Compliance with FCC rules

Please note that this equipment generates, uses and can radiate radio frequency energy. This equipment has been tested and has been found to comply with the limits of a Class A computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this equipment is operated in a commercial environment. If this unit is operated in a residential area it may cause some interference and under these circumstances the user would be required to take, at his/her own expense, whatever measures are necessary to eliminate the interference.

(FCC = Federal Communications Commission in the U.S.A.)

1.2. Compliance with European Directives

C€ This appliance complies with the statutory EMC (Electromagnetic Compatibility) directive 2004/108/EC and the Low Voltage Directive 2006/95/EC for safety of electrical equipment designed for certain voltages.

Note: The displayed value may be adversely affected under extreme electromagnetic influences.

1.3. Precautions for Safety Use

Before use, confirm the following articles for safe operation.

Grounding the Module

Ground the module to the DIN rail certainly. Separate this earth ground line from others, such as ground lines for the motor, inverter or power source. Unless the indicator is grounded, it may result in electric shock, operation error or fire.

Proper Power Source and Power Cable

Confirm the AC voltage, frequency and power tolerance of the power cable. If the voltage range of the cable is lower than the power line voltage, it may cause leakage or catch fire. Use pole compression terminals to connect the power cable to the terminals.

Fuse

The fuse is installed to help prevent the module from catching fire. The module is equipped with many safety circuits, so if the internal circuits are functioning properly, the fuse is not damaged. If the fuse is damaged, it may have been caused by strong electric discharge. If the fuse blows out, please contact us or our dealer. The fuse in this unit cannot be replaced.

Splashing Water

The module is not water resistant.

Flammable Gas

Do not install the module where flammable gas is present.

Heat Radiation of the Module

Space out instruments to radiate heat sufficiently. Use a cooling fan to keep the operating temperature of the module within specifications.

AD-4430A is covered with a protective transparent-resin cover. After the installation is complete, take off the protective cover prior to turning on the AD-4430A. Heat damage may be caused if you do not remove the protective cover.

The protective cover is for preventing wire chips when you will install and wire so please do not take off the cover until complete the installing and wiring.

2. Outline and Features

The AD-4430A has the following features.

- The AD-4430A is a weighing indicator that amplifies electrical signals from a load cell, converts it to digital data and displays it as a weight value.
- This indicator has the following performance :
 - Input sensitivity 0.15 μV/d (d = minimum division)

 - Sampling rate 1000 times/second

□ Analog 4-20mA output function

The AD-4430A converts mass or flow rate into analog 4-20mA output. There are two output channels that are IOUT1 and IOUT2. The output data is selected at each channel. "Analog 4-20mA output" will be called "analog output" from now on.

□ Flow rate calculation function

Digital filter 2 that is a low cutoff frequency can calculate stable flow rate when extreme mass change has been occurred. You can set the dumping time, which is to moderate flow rate change, and to average the moving time of the flow rate. Flow rate is calculated a thousand times per second as same speed as A/D conversion.

There is a "hold function" that is to control flow rate and constantly maintain output of the flow rate. There is a function that is "uncertain flow rate" to monitor flow rate. Uncertain flow rate is to monitor whether a calculation error has occurred or not from the control I/O.

- The calibration using gravity acceleration correction
 The function compensates for weighing error due to the difference of gravity acceleration between the calibration place and the measurement place.
- The digital linearization function The digital linearization function can rectify and reduce the deviation using weighing points during the zero and maximum capacity. Up to four weighing points excluding zero point can be specified. The high-order correction curve is used between each point.
- The digital span mode function Calibration is performed by numerical input of the load cell output (mV/V). Set the values to [-F I], [-F I], [-F I] in the calibration function.

The digital filter

The digital filter is used to prevent electrical signal movement from the load cell. This module has two channels so that each cutoff frequency can be set separately.

- Digital filter 1 (Fnc 05)
- Digital filter 2 (Fnc 06)

Specifications 3. Analog Part (Load cell Input, A/D Converter) 3.1. 0.15 μ V/d or greater (d = minimum division) Input sensitivity -35 mV to +35 mV (-7 to +7 mV/V) Input voltage range -35 mV to +35 mV (-7 to +7 mV/V) Zero range 5 VDC \pm 5%, 60 mA with remote sense capability Load cell excitation voltage (Maximum 4 x 350 Ω load cells) ±0.02 µV/°C Typ. ±0.1 µV/°C max Zero Temperature coefficient ±3 ppm/°C Typ. ±15 ppm/°C max Span 0.005% of full scale Non-Linearity A/D conversion method Delta-sigma method

A/D resolution count	Approximately 16,000,000 counts
Display resolution	99,999 d max. (d = minimum division) within 20,000 d is recommended
Sampling rate	1000 times/second
3.2. Digital Part (Dis	play and Keys)
Measurement disp	blay 5-digit 7-segment red LED

Display element	Measurement display Status indicators	5-digit 7-segment red LED Character height is 5.3mm, 1-digit red LED for negative polarity 6 red LEDs
Measurement display	Numerical display Decimal point Overflow display	Switches between NET and GROSS Selectable decimal places (10 ¹ , 10 ² , 10 ³ , 10 ⁴) All the digits turn OFF. (When the polarity is negative, the minus sign by LED appears at the highest-order digit.)
Status indicators	G : GROSS, N : NET, H : HOLD/HOLD BUSY, S : STABLE, Z : ZERO, X : Preset function selected at $F_{nc}DH$ in the basic function.	
Key switches	F/ESC, →(ZERO), ↑(TARE), ENT	

3.3. General

3.3.1. Interface

Interface	Specification	Connector
Load cell input	Refer to "3.1. Analog Part (Load cell Input, A/D Converter)"	Spring clamp terminal boad 7 pins
Analog output	Refer to "6.1. Analog Output"	Power clamp connector (3M)
Control I/O	Refer to "6.2. Control I/O"	MDR connector 20 pins female
Standard serial output	Refer to "6.3. Standard Serial Output"	Connector is not included
USB	USB 2.0 (High-speed)	Micro–B Cable is not included

3.3.2. Weighing Function

Zero operation	 Sets the gross weight to zero by pressing the →(ZERO) key. Selection of disable or enable for the operation when unstable. The zero value is stored in the nonvolatile memory. Zero adjustable range : Can be set optionally in the range of 1 to 100% of the maximum capacity. LED on Z will illuminate when the weighing value is within the center-zero range. 		
Zero tracking	Tracks the weight drift around the zero point to maintain zero. Zero tracking time : 0.0 to 5.0 sec. Can be set optionally within the range Zero tracking band : 0.0 to 9.9 d Can be set optionally within the range		
Tare	Sets the net weight to zero by pressing the $rightharpoondown (TARE)$ key. The inhibition / permission switch of the tare function can be used when the weighing value is unstable and negative. The tare value is stored in the nonvolatile memory (FRAM). Tare range : Gross weight \leq Maximum capacity		
Stability detection	Turns ON the stabilization indicator S when the variation amount of the weight values per sampling are within the set band in the set time. Detection time : 0.0 to 9.9 sec. Can be set optionally within the range Detection band : 0 to 9d Can be set optionally within the range		
Digital filter 1	Cutoff frequency (-3 dB) range : 0.7 to 100 Hz		
Digital filter 2	Cutoff frequency (-3 dB) range : 0.07 to 100 Hz		
Near-zero detection	Non loading can be detected as near-zero and it is output.		
Upper or lower limit detection	Compares the measurement with HI/OK/LO limits and outputs the results.		
Hold function	Displays the measurement value held. Select from sample hold, peak hold, average hold.		
Flow rate calculation	Calculate mass change value per unit time.		

3.3.3. **General**

Data memory backup	Backed up using by nonvolatile memory. (More than 10 years)	
Power source	DC 24 V, +10%, -15%	
Power consumption	Approximately 6 W	
Operating temperature Operating humidity	-10 °C to +50 °C, 85 %RH or less (no condensation)	
Installation method	DIN rail mount	
Mass	Approximately 200 g	

3.3.4. Accessories

Item	Quantity	Model name
Analog output connector	1	Power clamp wire mount socket, 3M, 35505–6200–A00 GF

Illustration 1 Dimensions

3.4. Names (The Front Panel and Rear Panel)

Illustration 2 Front panel & rear panel

3.5. **Procedure for Connecting the Analog Output Cable**

Specifications of conforming cable

Wire outside diameter	φ1.6 ~ 2.0mm
Wire size	AWG#20 (0.5mm ²)

Procedure for connecting the cable

- Step 1 Do not strip the cable jacket. Insert the cable all the way into the yellow cover.
- Step 2 Crimp the cover on the body using pliers from the side of the connector as shown in the illustration to the right.
- Step 3 Be sure the cover and the body are parallel to each other and there is no space between the body and the cover.

4. Installing the Module

In this section, installation environment, power terminal and load cell cable, and how to connect them are explained. Refer to each chapter for other external I/O.

4.1. Conditions to Install the Module

- □ The module is a precision electronic instrument. Handle it carefully.
- $\hfill\square$ The operating temperature is $-10\ensuremath{\,^\circ C}$ to $+50\ensuremath{\,^\circ C}$.
- Do not install the module in direct sunlight.

4.2. **Power Supply**

Earth ground the module to prevent electrical shock or indicator malfunction. If the module is not grounded, it may cause of an electric shock, or malfunction due to static electricity.

- □ Before connecting the module to the power source, read the instruction manual thoroughly.
- Do not connect the module to the power source before the installation is complete.
- Δ To avoid electrical shock, do not handle the power cable with wet hands.
- ▲□ Earth ground the module. Do not share the ground line with other electrical power equipment.
 - The power requirement is 24 DCV, +10% to -15%.
 Use a stable power source free from instantaneous power failure or noise.
 - □ To avoid a malfunction, do not share the power line with other devices.
 - The output voltage of a load cell is a very sensitive signal. Keep all electrical noise sources away from the load cell and load cell cable.
 - Use cables shielded for input and output. Connect the cable shield to the F.G. terminal or the module housing.
 - □ F.G. (frame ground) is internally connected to all the connector shields (SHLD/SLD).

Illustration 4 Cables

The Conductor Specifications

Clamp range (typ.)		0.13 mm ² to	1.5 mm ²
AWG		AWG24 —	AWG16
Solder plated wire		0.2 mm ² to	1.5 mm ²
Twisted wire		0.2 mm ² to	1.5 mm ²
Rod crimp terminal	DIN 46228 Part1	0.25 mm ² to	1.5 mm ²
Rod crimp terminal with cover	DIN 46228 Part4	0.25 mm ² to	0.75 mm ²
Lead length		8 mm	

4.3. Connecting Load Cell Cable

Load Cell

- The cable that extends from the load cell is a part of the load cell. Do not cut the load cell cable even if there is the remainder of the cable.
- □ Bundle the load cell cable if there is the remainder of the cable.
- The load cell is compensated for temperature change including the resistance value of this cable.
- Basically, connect the shield wire to a point of the shield terminal of the AD-4430A and do not ground it. If there are multiple ground points, it may result in noise due to a ground loop.

Remote Sensing (Compensation for length of the extension cable)

- □ The AD-4430A is equipped with the compensation function that monitors a drop voltage for the excitation voltage and rectifies the A/D conversion value.
- □ Use the 6-wire extension cable to use the remote sensing function for the load cell.
- Connect terminals of SEN+ and SEN-. If they are not connected, measurements cannot be performed.
- □ When the 4-wire cable is used , connect terminals of EXC+ and SEN+ and terminals of EXC- and SEN- at the load cell terminal of the AD-4430A.

Load Cell Cable

- □ Load cell cables should have high electrical insulation and shield performance.
- Use shielded cables with the insulator that is made of materials with high insulation resistance such as Teflon and polyethylene. NOTE: Teflon is a registered trademark of DuPont.
- We recommend using the load cell extension cable produced by A&D co., ltd. when using it. AX-KO162-5M to 100M (5m to 100m)

Cross-sectional area of the conducting wire0.5 mm², 6-wire cable equipped

Terminal No.		Terminal name & Function of the AD-4430A
7	SIG-	Load cell input (-)
6	SIG+	Load cell input (+)
5	EXC-	Load cell excitation voltage (-)
4	SEN-	Sensing input (-)
3	SEN+	Sensing input (+)
2	EXC+	Load cell excitation voltage (+)
1	SHLD	Shield

6-wire connection to load cell (Recommended)

	Load cell	Extension cable with sh	nield	AD-4430A
	Blue wire	SIG-		7 Terminals
	Green wire	SIG+	i	
	White wire	EXC-		
Cable				4 SIDSEN-
	Red wire	EXC+	<u> </u>	3 SEN+
\downarrow	Vallouvuira	Chield		$\frac{2}{10}$ EXC+
	Tellow wire	Shield		

Illustration 5 Load cell connections (6-wire connection)

Direct connection to load cell

Illustration 6 Load cell connections (4-wire connection & direct connection)

4.4. Verifying Load Cell Cable

When the load cell connection is complete, perform a connection check using the following procedure.

- □ Perform a visual check to ensure that the wiring is correct.
- □ Turn the module on.
- □ Set the weighing mode.
- Enter to the check mode and check the load cell output value.
 Refer to "7.2. Check Mode" to enter to the A/D check mode.
- Confirm that the displayed load cell output value matches the specified value. Normally the displayed value will be the load cell rated output value or less.
- If an error occurs, refer to "7.4. Verifying The Load Cell Connections (DIAGNOS)" or "7.5.
 Verifying The Load Cell Connections Using Multimeter".

5. **Operations**

5.1. General Functions

5.1.1. Zero Operation

- Zero operation is a function to set the gross weight to zero.
 It is performed by pressing the →(ZERO) key.
- □ The zero range is set in *L*-*F*^D5 (Zero range) and is expressed in percent of the maximum capacity with the calibration zero point as the center.
- Zero operation is disabled, even within the zero range, when the A/D converter overflow occurs.
- A ZERO error is output if zero operation is not performed when the value is unstable or out of range.
- □ The zero value is stored in the non-volatile memory and is maintained, even if the power is disconnected.
- □ Clearing the zero value is performed using the **F** key assigned to clear the zero value.

□ Functions Related to Zero Operation

- *L*-*F*^D5 (Zero range): A value between 0% and 100% can be specified.
- *L F ID* (Tare and zero at unstable weight value): The selection to enable or disable tare and zero operation when unstable.
 0: Disable both functions
 1: Enables both functions
- *L*-*F Ib* (Zero setting when power is turned on): The selection whether or not to perform zero setting when power is turned on. 0: Not used 1: Use

5.1.2. Zero Tracking

- □ The zero tracking function traces the gross weight drift around the zero point to maintain zero.
- The zero tracking time is set in [-FD6 (Zero tracking time) and the zero tracking band is set in [-FD7 (Zero tracking band). When the gross weight drift is within the specified ranges, zero tracking is performed automatically.
- □ A ZERO error is not output even if zero tracking is not performed.

Functions Related to Zero Tracking

- *L*-*FDE* (Zero tracking time): The value between 0.0 and 5.0 seconds can be specified.
- [-FD7 (Zero tracking band): The value between 0.0 and 9.9 d can be specified.
 (d = minimum division)

Zero tracking does not function when either of the settings is 0.0.

5.1.3. The Tare Function

- □ Tare is a function to store the gross weight as the tare value and set the net weight to zero. It is performed by pressing the \uparrow (TARE) key.
- □ The tare value is stored in the non-volatile memory and is maintained, even if the power is disconnected.
- □ Clearing the tare value is performed using the **F** key assigned to clear the tare value.
- Functions Related to the Tare Function
 - [-F I] (Tare and zero at unstable weight value): The selection to enable or disable tare and zero operation when unstable.

0: Disables both functions 1: Enables both functions

[-F |] (Tare when the gross weight is negative): The selection to enable or disable tare when the gross weight is negative.
 0: Disables tare
 1: Enables tare

5.1.4. Clearing the Tare Value and Zero Operation

The way to clear the tare value and zero operation : While pressing and holding the $rac{1}{4}$ (TARE) key, turn on the module.

Another way : In the off mode, while pressing and holding the \uparrow (TARE) key, press the ENT key.

5.1.5. Customizing the Function of the F Switch

□ Assign a function to the **F** key in the general functions.

Functions Related to the F Key

Assigns a function to the F key from the functions of Fnc 02 (F key) below :

- 0: None 1: Manual print command
- 2: Hold
- 3: Operation switch 1
- 4: Operation switch 2
- 5: Display exchange
- 6: Tare clear

- 7: Zero clear 8-11: Reserved by internally
 - 12: mV/V monitor (additional monitor)
 - 13: Digital filter 2 (additional monitor)
 - 14: Display output data selected in *Rn I I* (additional monitor)
 - 15: Display output data selected in An 21 (additional monitor)
- *L F I*5 (Clear the zero value): The selection to enable or disable clearing the zero value.
 0: Disable
 1: Enable

Operation switch 1 and 2

By assigning the **F** key to the operation switches, manual input is possible. The output is from the control output (34: Output operation switch is on or off). To ensure that the operation switch is ON or OFF, the status indicator X, that is a red LED, is assigned to the operation switch status.

These switches work as follows:

Operation switch 1:

When pressing and releasing the switch once, the state of the switch is maintained. Press the switch again to turn off or on.

Operation switch 2:

Only while the switch is being pressed, the switch is ON. When it is released, it is OFF.

Additional monitor

The decimal points of other data flashes to separate weighing data, both LEDs of G: gross and N: Net are illuminated. When pressing the F key again, the AD-4430A returns to weighing mode.

mV/V	: Output voltage of load cell in the unit of mV/V.
Digital filter 2	: Response of weighing data by digital filter 2
Display output data selected in An Display output data selected in An	 11 : Output data set from An 11 or An 21 in output data. 21 When flow rate is set and the rate is over five digits, all digits disappear. In this case, set the flow rate setting magnification (An 15 and An 25) grater than the
	current setting.

5.1.6. **Customizing the Function of the x Display**

Assigns a function to the x display from the functions of $F_{nc}D4$ (x display) below :

- 0: None
- 1: Zero tracking in progress
- 2: Alarm (Zero range setting error, over, failure tare calculation)
- 3: Display operation switch status as on or off
- 4: Near-zero
- 5: HI output
- 6: OK output
- 7: LO output

5.1.7. Memory Backup

Zero value, tare value, display status, calibration data and function data are written into non-volatile memory. The data retention period is more than 10 years. This module is not equipped with a battery.

5.1.8. The Detection for the Near–Zero

 Near-zero is a function to detect whether an object has been placed on the weighing pan. Near-zero is defined as a state of the near-zero when the weighing value is within the preset value for the near-zero.

Functions Related to the Near-Zero

- Fnc DB (Set value of near-zero): The value of near-zero can be specified.
- Fnc 09 (Comparison mass at near-zero): The selection of the gross weight or net weight to compare the value of near-zero.
 1: Gross weight
 2: Net weight

1: Gross weight 2: Net weight

5.1.9. Upper or Lower Limit Detection Function

This is a function to detect whether the weighed value is above an upper limit value or below a lower limit value.

Functions Related to the Detection Function

 A comparative upper or lower limit value can be set by Fnc ID (Upper limit value) or Fnc II (Lower limit value).

Result of Detection	Required value
HI	Weighing value $>$ Upper limit value
OK	Upper limit value \geq Weighing value \geq Lower limit value
LO	Lower limit value $>$ Weighing value

 Fnc I2 (Comparison mass of upper and lower limit): Gross weight or net weight to be compared with the upper or lower limit value can be selected.

1: Gross weight 2: Net weight

5.1.10. Digital Filter 1 and 2 (Fnc D5 and Fnc D6)

The AD-4430A has two digital filters. Each cutoff frequency setting range is different.

- Digital filter 1 (Fnc 05 : None, 100.0Hz (high) to 0.7Hz (low))
- Digital filter 2 (Fnc Db : None, 100.0Hz (high) to 0.07Hz (low))

Setting cutoff frequency

The cutoff frequency is the frequency where the vibrations decline to $1/\sqrt{2}$ times.

- If the weighing value is unstable, set the cutoff frequency lower. (Response rate is slow. Resistant to disturbance.)
- To make the response faster, set the cutoff frequency higher. (Response rate is fast. Susceptible to disturbance.)

It is possible to make adjustments while watching the effects of the digital filter with your own eyes.

By pressing the \rightarrow key during setting values as shown in Step 4 in "5.5.1. The **Procedure to Store New Parameters**" to check the weight displayed.

- key is to change the cutoff frequency. You can check the setting value shown on the status indicator with LED (binary number).
- ► key is to return to the value setting display. (The setting value changed above using the
 ↑ key will be displayed)

Digital filter flow is as follows.

5.1.11. The Hold Function

Hold functions are selected from the hold operations in F_{nc} []7.

Normal hold

The normal hold function holds the value displayed at the time the hold command was received.

Peak hold

The Peak hold function holds the maximum value reached after the hold command was received.

Averaging hold

The averaging hold function averages weighing data over a certain period of time and then holds the result.

Hold operations are controlled by the following.

- F key
 : Fnc D2 (F key function)
 2

 Control input
 : n D1 ~ n D5 (hold)
 9
- Above the near-zero and stable : *HL d*^D (Condition of automatic start) 1
- Above the near zero : *HLdD3* (Condition of automatic start) 2

Hold is released by the following.

- ■
 F
 key
 : Fnc D2 (F
 key function)
 2

 ■
 Control input
 : n D1~ n D5 (hold)
 9
- *HL d*^DY, *HL d*^D5, *HL d*^D6, *HL d*^D7 : Release the hold by each functions required.

Hold functions are as follows.

Operation requisition		Hold operation (Fnc07)		
		Nomal hold	Peak hold	Averaging hold
Average time	HL d0 I	Not available	Not available	Available
Start wait time	HL d02	Not available	Available	Available
Condition of automatic start	HL d03	Not available	Available *4	Available *4
Release using control input	HLdD4	Not available	Available	Available
Release time	HLdDS	Not available	Available	Available
Release using fluctuation range	e HL d06	Not available	Available *2	Available *3
Release at the near-zero	HLdO7	Not available	Available *1	Available

Weighing value to be held is the mass that is displayed on the main display.

As to be held, the gross, net, stable/unstable, and upper of lower limit detection result (HI / OK / LO) are also held. Near-zero is not be held.

The weighing value to be held is output from the standard serial output and the analog output.

*1 : When the setting is "release at near zero, the peak hold does not work at the near zero.

- *2 : In case of a peak hold, only a minus movement can be released.
- *3 : The basic value is the weighing value that is when the average time is started.
- *4 : When it is hold by the condition of automatic start, the hold can be released either when the F key or the hold is input from the control input.

Peak hold

- T1 : Setting time of the start wait time in *HLdD2*. Scale: 0.01sec. 0.00 to 9.99
- *1 : Hold is input before reached to the start wait time so that the start wait time is extended.
- *2 : As hold value is updated, the hold and the hold busy is on and off. (The hold busy variation is depending on the change of the mass value).

Illustration 7 Peak hold / Averaging hold

5.2. Flow Rate

Flow rate is a movement of the mass per certain period of time.

AD-4430A has two digital filters so that the two flow rates such as flow rate and the second flow rate are available to output.

- □ Functions Related to the flow rate
 - Fr 01 (Filter of flow rate 1)
 - *Fr* 02 (Filter of flow rate 2)
 - 1: Digital filter 1 2: Digital filter 2

In addition to the digital filters, damping time that is to suppress shaking of flow rate is available. The settings for suppress shaking of flow rate is set by "damping time setting" and that is a moving average time of damping the weighing values.

Ex. Damping time is 5 sec.: moving average is 5 sec.

Damping time setting can be set by each flow rate 1 and flow rate 2 individually.

- Functions Related to the flow rate
 - Fr 03 (Damping time of flow rate 1)
 - Fr D4 (Damping time of flow rate 2) 1 to 1000 sec.

The state of the flow rate can be checked from the control input and output as follows.

Control input

Prohibit update of flow rate : Hold the flow rate from updating.

Initialize flow rate : Make constant the movement of the mass that is temporally saved in the dumping time.

Approximate flow rate value of flow rate : It shows the flow rate value with a slight error.

Following is the flow chart of flow rate calculation after digital filter.

5.3. State Diagram And Operation Switches

5.3.1. State Diagram

The nonvolatile memory always stores either "OFF mode" or "other mode". It starts from the following state depending on the mode that has been kept when the automatic power is on.

- OFF mode (standby): Starts from OFF mode.
- Other mode : Starts from Weighing mode.

State diagram can be switched as follows.

Illustration 8 State diagram

5.3.2. Operation Switches

Key	State	Function and Use
F	Weighing mode	The display switch between gross and net in factory setting. The function key to able to select an arbitrary function and use.
	Setting mode	The ESC key.
	Weighing mode	The zero key to perform the zero operation.
*	Setting mode	The key to change a selected item or move a flashed figure.
	Weighing mode	The tare key.
<u>"</u>	Setting mode	The key to select parameter or increase number.
	Weighing mode	The key to turn the module off when pressing and holding the key.
ENT	OFF state (Standby)	The key to turn the module on.
	Setting mode	The key to store new settings.
Fee	Weighing mode	The function key (F key) to be selected the function and use.
	Setting mode	The return key or escape key.
ENT + F	Weighing mode	The keys to proceed to the function mode from weighing mode.
→ + ENT	Setting mode	The keys to proceed to the check mode from function mode.
F + ENT	OFF state (Standby)	The keys to proceed to the calibration mode from OFF state (Standby).

5.4. The Calibration

In the calibration mode, operations relating the load cell output voltage to the weighing value can be performed as well as operations directly related to weighing can be performed.

The calibration using actual load	 The calibration is performed using a calibration weight. Zero calibration : Press ENT key when no load is applied. Span calibration : Enter the calibration weight value and place the calibration weight. When the module enters the calibration mode using an actual load, the tare value and the zero value will be automatically cleared.
Digital span	 The calibration is performed without an actual load by numerical input of the load cell output voltage (mV/V). Set these functions related to the calibration. Zero input voltage : Numerical input of the load cell output at zero. [-F I] Span input voltage : Numerical input of the load cell output of span. [-F I] Span input voltage : Numerical input of the load cell output of span. [-F I] Span input voltage : Numerical input of the load cell output of span. [-F I] The calibration weight value of span : Numerical input of the calibration weight value corresponding to the span input voltage. [-F I] (These values relate the span input voltage and the calibration weight value.)
Gravity acceleration correction	The span error is calculated and corrected when gravity acceleration between the calibration location and use location is different.
Digital linearization	The nonlinearity correction function to correct weighing errors that occur halfway between the zero point and maximum capacity. Up to 4 points can be input in addition to the zero point, and the intervals between each point will be calculated using curves.
Function related to the calibration	The function stores basic parameters of the module such as the minimum division and maximum capacity and other data directly related to weighing is performed. Digital span calibration and gravity acceleration correction setting are also performed here.
All data initialization	All the data such as zero value, tare value, calibration data and function data are initialized.

□ All the parameters in the calibration mode are stored in the nonvolatile memory (FRAM).

• Actual load calibration and digital span can be mixed.

Example: For the zero calibration, an actual load is used. For the span calibration, the digital span is used.

5.4.1. The Calibration using Actual Load ([-5E])

The calibration using actual load (L-5EE) is performed using a calibration weight. When performing the calibration for the first time, preset [-F0 | (Unit), [-F02 (Decimal point position), [-FD3 (Minimum division) and [-FD4 (Maximum capacity) related to the calibration.

Note To avoid drift caused by changes in temperature, warm up the indicator for ten minutes or more before performing the calibration with an actual load.

In the OFF mode (Standby), Press the | F | + | ENT | key to Step 1 AL enter to the calibration mode and display Press the **ENT** key to start the calibration and display $\boxed{1-5EE}$. Step 2 To return to the weighing mode, press the **ESC** key.

Zero Calibration

- Step 3 Press the **ENT** key to display **CRL D**. If zero calibration is not to be performed, press the and proceed to Step 5. To check the current weighing value, press the \rightarrow key. When pressing the \uparrow key again, ERL D is display.
- Step 4 Wait for the stabilization (**S** LED). Press the **ENT** key. ---- is displayed for approximately two seconds. If span calibration is not performed, press the **ESC** key twice to return to the weighing mode.

Span Calibration

- Step 5 Press the **ENT** key when $\boxed{1 - 5P_0}$ is displayed. The calibration weight value (the current maximum capacity) is displayed and the least digit of the value blinks. Correct the value using the $| \rightarrow |$ and $| \uparrow |$ key so as to be the value of the calibration weight used. If span calibration is not performed, press the **ESC** key three times to return to the weighing mode.
- Place the calibration weight on the pan. Wait for the stabilization Step 6 (S LED). Press the ENT key. ---- is displayed for approximately two seconds.

Step 7 *E-End* is displayed.

- Press the **ESC** key. $\boxed{L-5EL}$ is displayed, and the Step 8 calibration data is stored in the FRAM memory.
- Step 9 The current state is the same as that of Step 2. To return to the weighing mode, press the **ESC** key.
- * If $\begin{bmatrix} \xi & \xi \\ x \end{bmatrix}$ is displayed, an error has occurred. Refer to "5.4.7. Error Codes for the Calibration" to take corrective action. X : error number.
- * The blinking decimal point means that the current value is not the weight value.

5.4.2. Gravity Acceleration Correction

- □ When the scale (weighing indicator) has been calibrated in the same place as it is being used, gravity acceleration correction is not required.
- A span error will appear if gravity accelerations are different between the calibration place and the use place. The gravity acceleration correction calculates and corrects this span error by these gravity acceleration correction values for both points (the calibration place and use place).
- * When the span is calibrated using actual load, the gravity acceleration correction settings are cleared, and the two gravity acceleration settings return to their default values.

Functions Related to the Gravity Acceleration Correction

- *L*-*F26* (Gravity acceleration of the calibration place): The gravity acceleration where the module has been calibrated.
- [-F27 (Gravity acceleration of use place): The gravity acceleration where the module is being used.

Gravity Acceleration Table

Amsterdam	9.813	m/s²	Manila	9.784	m/s²
Athens	9.800	m/s²	Melbourne	9.800	m/s ²
Auckland NZ	9.799	m/s ²	Mexico City	9.779	m/s ²
Bangkok	9.783	m/s²	Milan	9.806	m/s²
Birmingham	9.813	m/s²	New York	9.802	m/s²
Brussels	9.811	m/s²	Oslo	9.819	m/s²
Buenos Aires	9.797	m/s²	Ottawa	9.806	m/s²
Calcutta	9.788	m/s²	Paris	9.809	m/s²
Chicago	9.803	m/s²	Rio de Janeiro	9.788	m/s²
Copenhagen	9.815	m/s ²	Rome	9.803	m/s ²
Cyprus	9.797	m/s ²	San Francisco	9.800	m/s ²
Djakarta	9.781	m/s²	Singapore	9.781	m/s²
Frankfurt	9.810	m/s²	Stockholm	9.818	m/s²
Glasgow	9.816	m/s²	Sydney	9.797	m/s²
Havana	9.788	m/s²	Tainan	9.788	m/s²
Helsinki	9.819	m/s²	Taipei	9.790	m/s²
Kuwait	9.793	m/s ²	Tokyo	9.798	m/s²
Lisbon	9.801	m/s ²	Vancouver, BC	9.809	m/s²
London (Greenwich)	9.812	m/s ²	Washington DC	9.801	m/s ²
Los Angeles	9.796	m/s ²	Wellington NZ	9.803	m/s ²
Madrid	9.800	m/s ²	Zurich	9.807	m/s ²

5.4.3. The Linearization Function

Even if zero and span calibration have been performed, weighing errors may occur between the zero point and maximum capacity. The digital linearization (L - 5EE) is a corrective function designed to non-linearly correct weighing errors.

- □ It is possible to input up to four points in addition to the zero point.
- □ The zero point and each input point will be corrected to put them in a straight line.
- □ When the actual load input for digital linearization is performed, the calibrated data will be refreshed using zero point and final input point data. It is not necessary to calibrate again.

Illustration 10 Digital linearization

5.4.4. The Actual Load Linearization Function (L-5EL)

Set the digital linearization by loading/unloading masses.

□ Warm up the module for at least ten minutes to avoid the effects of temperature drift.

□ The input order should proceed from the smallest mass to the largest mass.

Step 1	Press the $F + ENT$ key to enter to the calibration mode and display $\boxed{[RL]}$. Press the ENT key to start the calibration and display $\boxed{[-5EF]}$. Select $\boxed{[-5EF]}$ using	
	the \uparrow key and press the ENT key.	
Step 2	Lnr □ is displayed. If monitoring the current weighing value, press the → → key. When pressing the → key again, Lnr □ is display.	<u>L-5EE</u> Lnr ()
Step 3	Placed nothing on the pan and wait for the stabilization (S LED). Press the ENT key is displayed for approximately two seconds.	
Step 4	$ \underbrace{ \lfloor nr - l } $ is displayed. If you want to check the current weighing value, press the key. When pressing the $ \rightarrow $ key again, $ \underbrace{ \lfloor nr - l } $ is displayed. Press the ENT key. The weight value (the current maximum capacity) is displayed and the least digit of the value blinks. Correct the value using the $ \rightarrow $ and $ \rightarrow $ key so as to be the weight value used.	L n r / 02000 00,100 Sample
Step 5	Place the weight on the pan. Wait for the stabilization (S LED). Press the ENT key.	
Step 6	\boxed{Lnr} is displayed. Repeat step 4 and step 5. The procedure proceeds in order of \boxed{Lnr} $\xrightarrow{3}$ \rightarrow \boxed{Lnr} $\xrightarrow{4}$ \rightarrow $\boxed{L-End}$.	L-End
Step 7	Proceed to step 8 to finish the input operation. If you re-input the digital linearization, select the input point using the All data following the new input point will be cleared.	L-SEE
Step 8	Press the ESC key. $\underline{L-5EE}$ is displayed and the inputted data will be stored in the FRAM. At the same time, the calibrated data is also refreshed. Press again the ESC key to return to weighing mode.	
* When	n $\boxed{L E_{r} \times}$ is displayed, an error will occur. X : error number.	
* The b	blinking decimal point means that the current value is not the weight va	alue.

5.4.5. The Function Related to the Calibration ([-Fnc)

All th	ne values set in the c	alibration function are stored in the nonvolatile memory (FRAM).
Step 1	Press the F +	ENT key to enter to the calibration mode and display [RL].
	Press the ENT k	ey to start the calibration and display <u>[-5E+]</u> .
	Press the ESC k	ey to return to weighing mode.
Step 2	Select [-Fnc] us	sing the 🛧 key and press the ENT key.

- Step 4 When changing data, two methods of parameter selection and digital input depending on the function are available.

Туре	Description of method to change data
Parameter selection	Only the available parameter is displayed and blinks. Select a number using the 🚹 key.
Digital input	All the digits are displayed. A digit to be changed blinks. Select a digit using the 🔶 key and change the value using the 🛧 key.

After changing data, press the **ENT** key. The next function number is displayed. When the value is not to be changed, press the **ESC** key to return to the function number display.

- Step 5Press the **ESC** key to store new data in FRAM and $\boxed{ [-F_{\Box C}]}$ is displayed.Press again the **ESC** key to return to the weighing mode.
- * The blinking decimal point means that the current value is not the weight value.
- * If digital input data is out of range, *ErrdE* is displayed, and the data is canceled.
- * The function code on the next page is used for command of the USB.

Item Function code Name	Description, Range and Default value
[-F[] 1001 Unit	0: No used 1: g 2: kg 3: t 4: N 5: kN
L-FD21002Decimal point position	Decimal point position of the weighting value $0: 0 1: 0.0 2: 0.00 3: 0.000 4: 0.0000$
[-FD3 1003	Minimum division (d) of the weighting value
Minimum division	1:1 2:2 3:5 4:10 5:20 6:50
<i>[-F[]Ч</i> 1004 Maximum capacity	Maximum capacity of the module. Weighing is possible up to the value of this setting plus 8 digits. If the value exceeds this, overflow will occur and will not be displayed. The decimal point position depends on \mathcal{E} -F \mathcal{D} - \mathcal{D} (Decimal point position). 1 to 70000 to 99999
[-F[]5 1005 Zero range	The range to enable zero operation by the \rightarrow (ZERO) key expressed as a percentage of the maximum capacity with the calibration zero point as the center. For example, if 2 is set, the value in the range of ±2% of the maximum capacity with the center at the calibration zero point will be to zero. When a power-ON zero is performed, the initial zero point will be the center. 0 to 2 to 100
L-FDE1006Zero tracking time	Performs zero tracking using this setting in combination with the setting of $[-F_0]$. When $[-F_0]$ stores 0.0, zero tracking will not be performed. Scale : 0.1 seconds.
[-F[]] 1007 Zero tracking width	Performs zero tracking using this setting in combination with the setting of \mathcal{L} - \mathcal{F} \mathcal{D} \mathcal{L} . When \mathcal{L} - \mathcal{F} \mathcal{D} \mathcal{T} stores 0.0, zero tracking will not be performed. Scale : 0.1 d (minimum division). 0.0 to 9.9
Weight value 4.5 d 0.0 d 1 sec Weight value 5.0 d 4.5 d 4.0 d 3.5 d 3.0 d 2.5 d 2.0 d 1.5 d 0.0 d 1 sec 0.0 d 0.0 d 0.	When [$-FDD = 1.0,$ [$-FDT = 4.5$ Zero tracking follows the weight value drifting around the zero point and adjusts to display as zero.Image: definition of the definitio

* The function code is used for the USB command.

Item Function code Name	Description, Range and Default value
[-FDB1008Stability detection time	Performs stability detection using this setting in combination with the setting of [-FD]. When [-FD] stores 0.0, stability detection will not be performed. (Stable all the time) Scale : 0.1 seconds. 0.0 to 1.0 to 9.9
[-FD] 1009 Stability detection width	Performs stability detection using this setting in combination with the setting of [-FDB. When [-FD9 stores 0, stability detection will not be performed. (Stable all the time) Scale : 0.1 d (minimum division). 0 to 2 to 100
C-FE Weight value	Stability detection outputs the STABLE signal when changes in the weight value are within a certain range during a certain time.
	Time
[-F I] 1010 Tare and zero at unstabl weight value	 Tare and zero operation when unstable 0: Disables both functions. 1: Enables both functions.
[-F 1011 Tare when the gross weight is negative	Tare when the gross weight is negative. 0: Disables tare. 1: Enables tare.
<i>[</i> - <i>F I</i> ∂ 1012 Output when out of rang and unstable	Standard serial output when the weight value overflows or is unstable. 0: Disables output. 1: Enables output.
<i>E - F I3</i> 1013 Exceeding negative gros weight	To judge when the negative gross weight is exceeded. 1: Gross weight < -99999 2: Gross weight < Negative maximum capacity 3: Gross weight < -19 d
[-F I4 1014 Exceeding negative net weight	To judge when the negative net weight is exceeded. 1: Net weight < -99999
<i>E -F IS</i> 1015 Clear the zero value	Select whether or not to clear the zero value. 0: Disables. 1: Enables.
<i>[-F [</i> 5 1016 Zero setting when powe is turned on	 Select whether or not to perform zero setting when power is turned on. The available range of the zero setting is ±10% of the maximum capacity with the calibration zero point as the center. 0: Not used. 1: Use.

Item Function code Name	Description, Range and Default value	
[-F 7 1017 Input voltage at zero	Input voltage from a load cell at zero. Scale : mV/V. This value is determined in zero calibration during the calibration with an actual load. Scale : 0.0001 mV/V . $-7.0000 \text{ to } 0.0000 \text{ to } 7.0000$	
<i>[-F IB</i> 1018 Span input voltage	Input voltage from a load cell at span. This value and the value of $[-F I]$ are determined in span calibration during the calibration with an actual oad. Scale : 0.0001 mV/V. 0.0100 to 3.2000 to 9.9999	
[-F I] 1019 Weight against span Input voltage	The calibration weight value corresponding to the input voltage at span of $[-F \ IB]$. When performing digital span, $[-F \ I7]$, $[-F \ IB]$ and $[-F \ I9]$ are required for the calibration. The decimal point position depends on $[-FD2]$ (Decimal point position). 1 to 32000 to 99999	
Input voltage <i>E -F I</i> <i>Displayed weight</i>		
 NOTE: *1 Record the setting values of [-F I], [-F IB and [-F I] in the "Function list" at the end of the manual to prepare against a malfunction. *2 By changing the parameters of [-F I], [-F IB and [-F I], "Zero calibration" and "Span calibration" can be adjusted optionally. (Digital span accuracy approximately 1/5000. The accuracy varies depending on the load cell output accuracy and the conditions of the calibration.) 		
<i>L-F26</i> 1026 Gravity acceleration o the calibration place		
[-F27 1027 Gravity acceleration or use place		
L-F2B1028Suppression of thehold function	0: Permission 1: Prohibition	
1029~1032 [-F29 ~ 32	Reserved internally	
5.4.6. The Function Related to the Linearization Function (L-Fnc)

Confirm and change linearity settings.
 To use this function, select <u>L-Fnc</u> in the same way as the function related to the calibration are selected.

Item Function code Name	Description, Range and Default value
L-FD I 1101 Number of input points	Number of points where linear input was done. The linear-zero input is included as one point. Digital linearization is not performed when the set value is between 0 and 2.
L-FD2 1102 Linear-zero	Voltage for linear-zero input. Scale : 0.0001 mV/V. -7.0000 to 0.0000 to 7.0000
L-FD3 1103 Setting value for linear 1	The setting value of weight for linear 1 input. The decimal point position depends on $[-FD2]$ (Decimal point position).
L-F04 1104 Span at linear 1	The span voltage between linear-zero and linear 1 input.Scale : 0.0001 mV/V.0.0000 to 9.9999
L-F05 1105 Setting value for linear 2	The setting value of weight for linear 2 input. The decimal point position depends on $[-FD2]$ (Decimal point position).
L-FDБ 1106 Span at linear 2	The span voltage between linear-zero and linear 2 input.Scale : 0.0001 mV/V.0.0000 to 9.9999
L-F07 1107 Setting value for linear 3	The setting value of weight for linear 3 input. The decimal point position depends on $[-FD]$ (Decimal point position).
L-FDB 1108 Span at linear 3	The span voltage between linear-zero and linear 3 input.Scale : 0.0001 mV/V.0.0000 to 9.9999
L - F09 1109 Setting value for linear 4	The setting value of weight for linear 4 input. The decimal point position depends on $[-FD]$ (Decimal point position). 0 to 99999
L-FID 1110 Span at linear 4	The span voltage between linear-zero and linear 4 input.Scale : 0.0001 mV/V.0.0000to 9.9999

5.4.7. Error Codes for the Calibration (*E Er*)

When an error occurs during the calibration, the error number is displayed. If calibration is finished without removing the error, the setting values will be restored to the state before calibration.

Calibration errors and remedies

Error No.	Description of cause	Treatment
[Er I	The display resolution (maximum capacity / minimum division) exceeds the specified value.	Make the minimum division greater or make the maximum capacity smaller. The specified value depends on specifications of the weighing system.
[Er2	Voltage at zero calibration exceeds in the positive direction.	Check the load cell rating and connection. When nothing is wrong with the rating and connection, adjust the load cell output as described in the next
[Er] Voltage at zero calibration exceeds in the negative direction.		section. When the load cell or A/D converter may be the cause of error, confirm this by using the check mode.
[Er4	The value of the calibration weight exceeds the maximum capacity.	Use an appropriate the calibration weight and
[Er5	The value of the calibration weight is less than the minimum division.	calibrate again.
[Er6	The load cell sensitivity is not sufficient.	Use a load cell with higher sensitivity or make the minimum division greater.
[Er]	Voltage at span calibration is less than voltage at the zero point.	Check the load cell connection.
[Er8	The load cell output voltage is too high when the mass of maximum capacity is weighed.	Use a load cell with a greater rating or make the maximum capacity smaller.

5.4.8. Adjustment of the Load Cell Output

Add a resistor as shown below to adjust the load cell output. Use a resistor with a high resistance value and a low temperature coefficient.

* Because the zero point of the module has a wide adjustable range, correcting the output of a normal load cell is hardly ever required.

Before an output correction is carried out, confirm load cells (deformation, wiring mistakes, contact with anything, or model selection etc.) and connections.

5.5. The List of General Functions

General functions are divided into groups according to function and are indicated by function item (a function group name with function number).

All the settings selected in general functions are stored in the FRAM.

5.5.1. The Procedure to Store New Parameters

Step 1	Press the ENT	+ F key to enter to the function mode and display $F_{\Omega C}$.				
	Press the ENT	ey to start the function mode.				
	To return to the w	eighing mode, press the ESC key.				
Step 2	Press the 🛧 k	ey to select the function group to be set.				
	Press the ENT	key. The function group is as follows :				
	Display	Group name				
	Fnc F	Basics function				
	HLd F	Hold function				
	Fr F	Flow rate function				
	io F	Control I/O function				
	EL F	Standard serial output function				
	Rn F	Analog output function				

Step 3 Press the ★ key to select the function number to be set. Press the ENT key. The current setting value is displayed.

Step 4 When changing parameter, two methods of parameter selection and digital input depending on the function are available.

Туре	Description of method to change data		
Parameter selection	Only the available parameter is displayed and blinks. Select a number using the key.		
Digital input	All the digits are displayed. The digit to be changed blinks. Select the digit using the → key. Change the value using the ↑ key.		

After changing data, press the **ENT** key. The next function number is displayed. When the value is not to be changed, press the **ESC** key to return to the function number display.

- Step 5 Press the ESC key. The function number disappeared and the new parameters are stored in FRAM to return to Step 2. Press the ESC key again to return to the weighing mode.
 - □ The blinking decimal point means that the current value is not the weight value.
 - □ If a data exceeding the available range is inputted, $\boxed{E_{rrd}E}$ is displayed, and the data is canceled.
 - □ The function code on the next page is used for command of the USB.

Item Function code Name	bescription, Range and Default value
Fnc[] 120' Key switch disable	Each digit of the setting corresponds to a key switch. Only available in the weighing mode.Key assignment to each binary digit.0: Permission4th3rd2nd1st11: ProhibitionESCT0000 to 1111
Fnc02 1202 F key	0: None7: Zero clear1: Manual print command8~11: Reserved internally2: Hold12: mV/V monitor3: Operation switch 113: Digital filter 24: Operation switch 214: Display output data selected in fln 115: Display exchange15: Display output data selected in fln 216: Tare clear13: Display between the selected in fln 21
Fnc D3 1203 Display rewrite rate	1: 20 times/sec. 2: 10 times/sec. 3: 5 times/sec.
Fnc04 1204 x display	 0 : None 1: Zero tracking in progress 2: Alarm 3: Display operation switch status as on or off 4: Near-zero 5: HI output 6: OK output 7: LO output
Fnc05 1208 Digital filter 1	Selects a cutoff frequency. 0: None 6:20.0 Hz 12:2.8 Hz 1:100.0 Hz 7:14.0 Hz 13:2.0 Hz 2: 70.0 Hz 8:10.0 Hz 14:1.4 Hz 3: 56.0 Hz 9: 7.0 Hz 15:1.0 Hz 4: 40.0 Hz 10: 5.6 Hz 16:0.7 Hz 5: 28.0 Hz 11: 4.0 Hz
Fnc06 1200 Digital Filter 2	Selects a cutoff frequency. 0: None 6:20.0 Hz 12:2.8 Hz 18:0.40 Hz 1:100.0 Hz 7:14.0 Hz 13:2.0 Hz 19:0.28 Hz 2: 70.0 Hz 8:10.0 Hz 14:1.4 Hz 20:0.20 Hz 3: 56.0 Hz 9: 7.0 Hz 15:1.0 Hz 21:0.14 Hz 4: 40.0 Hz 10: 5.6 Hz 16:0.7 Hz 22:0.10 Hz 5: 28.0 Hz 11: 4.0 Hz 17:0.56 Hz 23:0.07 Hz
Fnc07 1207 Hold	1: Normal hold 2: Peak hold 3: Averaging hold
Fnc DB 1208 Near-zero	B Decimal point position depends on [-FD2 (Decimal point position). -99999 to 10 to 99999

5.5.2. The Basics Function (Fnc F)

* The function code is used for the USB command.

ltem Name	Function code	Description, Range and Default value
Fnc09 Compari at near-z	1209 ison mass zero	1: Gross weight2: Net weight
Fnc 10 Upper lir	1210 mit value	The decimal point position depends on \mathcal{L} - FD2 (Decimal point position). -99999 to 10 to 99999
Fnc 11 Lower lir	1211 nit value	The decimal point position depends on \mathcal{L} -F \mathcal{D} ? (Decimal point position). -99999 to -10 to 99999
Fnc I2 Comparise upper and	1212 on mass of I lower limit	1: Gross weight 2: Net weight

5.5.3. The Hold Function (HLd F)

Item Function code Name	Description, Range and Default value		
HL dD I 1301	Time to perform the averaging. 0.00 is not averaged.		
Averaging time	Scale : 0.01 seconds. 0.00 to 9.99		
HLdO2 1302	Waiting time to commence a holding or averaging.		
Start wait time	Scale : 0.01 seconds. 0.00 to 9.99		
HLdD3 1303	The condition to commence a holding or averaging.		
Condition of	0: Not used 2 : Above the near-zero		
automatic start	1: Above the near-zero, and stable		
	Release when control input of the hold terminal is falling.		
	0: Do not release Control Input ON OFF		
HLdDY 1304 Release using	Function state ONOFF		
control input	1: Release Control Input ON OFF_		
	Function state ON OFF		
HLdOS 1305	Release after a set amount of time has passed. 0.00 is not averaged.		
Release time	Scale : 0.01 seconds. 0.00 to 9.99		
HLdD6 1306	Release when fluctuation from the holding value exceeds a set value.		
Release using The decimal point position depends on <i>L</i> - <i>F</i> ^D ² (Decimal point position			
fluctuation range 0 to 99999			
HLdD7 1307	Release when the weighing value is in the near-zero.		
Release at near-zero	0 : Do not release. 1 : Release.		

Item Name	Function code	Description, Range and Default value
Fr Ol	1901	
Filter of flow rate 1		1 : Digital filter 1
Fr 02	1902	2 : Digital filter 2
Filter of flow rate 2		
Fr 03	1903	Suppress shaking of flow rate.
Damping time of flow rate 1		The higher value setting, the less shaking.
Fr 04	1904	Scale: 1 sec.
Damping time of flow rate 2		1 to 5 to 1000

5.5.4. The Flow Rate Function $(F_r F)$

	Item Function code Name	Description, Range and Default value
	1601 م 1601 Function of IN1	0 : Not used25 : Prohibit update of flow rate 11 to 6 : Reserved internallyOFF=Update ON=Not update
	ہ 1602 1602 Function of IN2	7 : Zero26 : Prohibit update of flow rate 28 : TareOFF=Update ON=Not update
	1603 ق ما Function of IN3	9: Hold 27: Initialize flow rate 1 10: Gross / Net exchange 28: Initialize flow rate 2
Z	1604 Ifunction of IN4	11 : Diagnose29 : Specify flow rate in <i>Rn</i> 1112 : Print commandOFF: flow rate 1, ON: flow rate 20 to 30
	05 1605 Function of IN5	13 to 21:Reserved internally 30 : Specify flow rate in Hn 2 1 22 : Zero clear OFF: flow rate 1, ON: flow rate 2
	06 1606 Info Function of IN6	23 : Tare clear 24 : Operation same as a F key * 0 to 30 * Not functioned for operation switch 2
	1611 مر Function of OUT1	0 to 18 to 36
	1612 IC	1 to 8 : Reserved internally 31 : In weighing (01) 9 : Stability 32 : In weighing (50 Hz) 0 to 9 to 36
	1613 IB امن Function of OUT3	10: Over capacity 33: Alarm 11: Net display 34: Output operation switch
	1614 IGH من Function of OUT4	12 : During tareis on or off0 to 3613 : Hold35 : Approximate flow rate
	1615 امن 15 Function of OUT5	14 : Hold busyvalue of flow rate 10 to 3615 : HI output36 : Approximate flow rate
	ات الآ 1616 Function of OUT6	16 : OK output value of flow rate 2 0 to 36
	IT 1617 امر Function of OUT7	18 : Near-zero 19 to 29 : Reserved internally
O U O	<i>ا</i> ه ا Function of OUT8	0 to 36
	ان م ۲ م 1621 OUT1 Logic	1 : Inverting output If data is "0" level, the output transistor conducts (ON).
	OUT2 Logic	2 : Non inverting output If data is "1" level, the output transistor conducts (ON)
	1623 ما OUT3 Logic	AD-4430A DC +35V max.
	24 1624 OUT4 Logic	Internal circuit Output terminal Resistance
	1625 م، OUT5 Logic	Output transistor DC 50mA max.
	1626 م، OUT6 Logic	COM (Common terminal)
	27 1627 OUT7 Logic	•••••• 🗸
	1628 DUT8 Logic	

5.5.5. The Control I/O Function (10 F)

Item Name	Function code		Descriptic	on, Range and	Default value
[L]] I Serial data	1701	1:Weighing2:Gross	display	3 : Net 4 : Tare	5 : Gross / Net / Tare
[L []2 Communicat	1702 ion mode	1 : Stream	2 : Au	tomatic print	3 : Manual print
[L 0] Baud rate	1703	1:600 bps	2: 24	00 bps	

5.5.6. The Standard Serial Output Function ([L F])

lte Na	em Function code	Description, Range and Default value
IOUT1	Rn II 2011 Output data	1: Weighing display (Digital filter 1)2: Gross (Digital filter 1)3: Net (Digital filter 1)4: Weighing display (Digital filter 2)5: Gross (Digital filter 2)6: Net (Digital filter 2)7: Flow rate 18: Flow rate 29: Flow rate 1 or Flow rate 2 (Select in control input)
	Rn IZ 2012 Mass/flow rate at 4mA output	Select mass/flow rate by setting output data (fln 11) Decimal point position linkage: • Mass : [-FD2 • Flow rate : fln 15 (setting magnification of flow rate) + [-FD2 -99999 to 0 to 99999
	Rn I3 2013 Mass/flow rate at 20mA output	Select mass/flow rate by setting output data (Rn 11) Decimal point position linkage: • Mass : [-FD2 • Flow rate : Rn 15 (setting magnification of flow rate) + [-FD2 -99999 to 70000 to 99999
	Rn IY 2014 Flow rate unit	1: Seconds 2 : Minutes 3 : Hours
	Rn IS 2015 Flow rate setting magnification(times)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
IOUT2	ମିନ ∂ I 2021 Output data	 Weighing display (Digital filter 1) Gross (Digital filter 1) Net (Digital filter 1) Weighing display (Digital filter 2) Gross (Digital filter 2) Net (Digital filter 2) Shet (Digital filter 2) Flow rate 1 Flow rate 2 Flow rate 1 or Flow rate 2 (Select in control input)
	ମିନ 22 2022 Mass/flow rate at 4mA output	Select mass/flow rate by setting output data (Rn 2 l) Decimal point position linkage: • Mass : [-FD2 • Flow rate : Rn 25 (setting magnification of flow rate) +[-FD2 -99999 to 0 to 99999
	Rn 23 2023 Mass/flow rate at 20mA output	Select mass/flow rate by setting output data (An 2 I) Decimal point position linkage: • Mass : [-FD2 • Flow rate : An 25 (setting magnification of flow rate) +[-FD2 -99999 to 70000 to 99999
	유 군식 2024 Flow rate unit	1: Seconds2 : Minutes3 : Hours
	Rn 25 2025 Flow rate setting magnification (times)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

5.5.7. The Analog Output Function $(R_n F)$

6. Interface

6.1. Analog Output

Analog output can be converted from mass or flow rate into electrical output. The electrical output has two channels, IOUT1 and IOUT2).

Output type		4-20mA current output	
Number of channel		2 channels (IOUT1 and IOUT2)	
Load resistance		0~520Ω	
Resolution		Approximately 4000	
Conversion rate		1000 times/sec.	
Non-linearity		\pm 0.1% Max	
Temperature	Zero point	±0.01% of F.S. /°C Max.	
coefficient	Sensitivity	±0.01% of F.S. /°C Max.	

D/A OUT									
	5	SLD							
	4	ICOM							
	3	IOUT2							
•	2	ICOM							
	1	IOUT1							

Pin No.	Symbol	Description
1	IOUT1	Analog current output 1+
2	ICOM	Analog current output - common (connected to 4 pins)
3	IOUT2	Analog current output 2+
4	ICOM	Analog current output - common (connected to 2 pins)
5	SLD	Connected with FG ground terminal on the power
		supply connector

When flow rate is output, the flow rate can be selected from the control input and output data to either IOUT1 or IOUT2.

- An II (IOUT1 output data)
- An 2 I (IOUT2 output data)

6.1.1. Analog Output Diagram

Analog output of IOUT1 is constructed as follows. (The construction of IOUT2 is the same).

6.1.2. Setting Magnification of Analog Output

Details of the setting magnification are explained at IOUT1 and flow rate 1.

According to the limitation of the digit number at the main display, flow rate setting at 4mA or 20mA output (R_n 12 or R_n 13) can be set up to 99999.

It should be over 99999 in case the mass change is high and the flow rate setting is "Hours".

Ex. When a calibration setting is as follows;

Weighing capacity : 2000.0g, Minimum division : 0.1g, Flow rate : 20.0g/sec., Flow rate unit : Hours.

20.0g X 3600 sec. = 72000.0g/hour

The output setting of 72000.0g/hour at 20mA output is below.

Rn I2 (IOUT1 flow rate at 4mA output): 0

Rn I3 (IOUT1 flow rate at 20mA output) : 72000

Rn 15 (setting magnification of flow rate 1): 10

After the setting magnification : $72000 \times 10 = 720000$

As the decimal point position is $0.0 (\mathcal{L} - F \mathcal{D} \mathcal{Z})$, the actual setting is following.

Flow rate at 4mA output : 0.0

Flow rate 20mA output : 72000.0

It is virtually available to set the flow rate at 20mA output by 72000.0.

Related function

Flow rate can be shown on the monitor by setting 14 or 15 in $F_{DC}D^2$ (F key function). Refer to "5.1.5. Customizing the Function of the F Switch" for details.

6.2. Control I/O

Part of input ($IN1 \sim IN6$)

- □ Using a control input from peripherals, data can be monitored and be output.
- □ Using a control output, a weighing status and weighing result can be output.
- The input and output circuit is isolated from the DC power supply terminals and load cell terminals.
- Supply DC +24 V between the power supply input terminal (I/O PWR +24V) and COM terminal.

	,
Input circuit type	No-voltage contact input (Photo coupler)
Input open voltage	According to use
OFF current	0.1 mA max.
ON current	2.7 mA min.
Input threshold voltage	2 V

Part of output (OUT1 ~ OUT8)

Output circuit type	Open collector
Isolation	Photo coupler
Output voltage	DC 35 V max.
Output current	50 mA max.
Output saturation voltage	1.1 V max.

• The function assigned to terminals

- Assign the function to these input terminals : ¹ Ω I (IN1 function) to ¹ Ω Δ (IN6 function)
- Assign the logic to these output terminals : م 2 / (OUT1 logic) to ع 28 (OUT8 function)

6.3. Standard Serial Output (Current Loop)

- □ The standard serial output (C.L.) circuit is isolated from all terminals.
- □ The standard serial output can connect to the A&D external display and printer.
- □ The standard serial output needs to supply DC current from an external DC power source.
- □ The standard serial output terminals of the AD-4430A have non-polarity.
- □ The standard serial output terminals are pin 3 and 13 of the control I/O connector.

Transmission	0 – 20mA, Current loop
Data length	7 bits
Start bit	1 bit
Parity bit	Even
Stop bit	1 bit
Baud rate	600 bps, 2400 bps
Code	ASCII

Control I/O

		вĽВ		
		\square		
		U		
C.L.	13	678	3	C.L.
		${\rm \Box}$		

6.3.1. Data format of Serial Output

□ The "A&D standard format" is used to the output format for communication with the A&D printer, and external display and consists of dual headers, data, unit and terminator.

A&D standard format

Header 1 H	leader 2	Data (Polarity, 8 digits including decimal point) Unit Termin									
S T ,	GS,	+ 0 1 2	3 . 4 5 k g CR LF								
Item	ASCII code	Hexadecimal	Description								
	ST	[53 54]	Stable								
Header 1	US	[55 53]	U n s table								
	OL	[4F 4C]	Overload								
	GS	[47 53]	Gross								
Header 2	NT	[4E 54]	Net								
	TR	[54 52]	Tare								
Punctuation	7	[2C]	Comma								
	0 to 9	[30 to 39]	Numerical number								
Dete	+	[2B]	Positive sign								
(ASCII code)	_	[2D]	Negative sign								
	SP	[20]	Space								
	-	[2E]	Dot								
	SP SP	[20 20]	Not used								
	SP g	[20 67]	g (gram)								
Unit	kg	[6B 67]	kg (kilogram)								
(6 types)	SP t	[20 74]	t (ton)								
	SP N	[20 4E]	Ν								
	k N	[6B 4E]	kN								

Examples of the A&D standard format

Data (Polarity, 8 digits including																			
ŀ	lea	der	1 H	lea	der	2	_		de	cima	l poi	nt)			Unit Terminator				
Gross	S	T	,	G	S	,	+	0	0	1	2	3	4	5	k	g	CR	LF	Header 2 [GS]
Net	S	Т	,	Ν	Т	,	+	0	0	1	0	0	0	0	k	g	CR	LF	Header 2 [NT]
Tare	S	Т	,	Т	R	,	+	0	0	0	2	3	4	5	k	g	CR	LF	Header 2 [TR]
Including "."	S	Т	,	G	S	,	+	0	1	2	3		4	5	k	g	CR	LF	Numerical part [.]
+Over	0	L	,	G	S	,	+	SP	SP	SP	SP		SP	SP	k	g	CR	LF	Header 1 [OL]
-Over	0	L	,	G	S	,	_	SP	SP	SP	SP		SP	SP	k	g	CR	LF	Header 1 [OL], Polarity [−]
Unstable	U	S	,	G	S	,	+	0	1	2	3		4	5	k	g	CR	LF	Header 1 [US]
Output data	0	L	,	G	S	,	+	SP	SP	SP	SP		SP	SP	k	g	CR	LF	Same as +Over

The position of decimal point is fixed even if data is out of range.

6.3.2. Transfer Mode of Serial Output

The type of the current loop output (*L D2*) is 3 types of "stream", "automatic print" and "manual print".

Stream	The data is output at each display rewrite. If the data cannot be output completely due to a slow baud rate, the data is output at the next rewrite. The output data uses a displayed data. Therefore, hidden data is not output.
Automatic printing	When a weighing value becomes at 5 counts or more and is stable, data output is performed once. It is necessary that data become less than 5 counts to output data again. Select "Normal hold (1)" in Fac $D7$ "Hold function" for setting.
Manual printing	When "manual printing" is selected, data is output when receiving a printing command from the control input or pressing the assigned print key.

6.4. USB

- The function settings can be input and output form a device that is connected to the Micro-B USB connector.
- When USB is connected to a personal computer (PC), the PC recognizes the USB as a virtual COM port. The setting of virtual COM port is below.
 Baud rate: 9600 bps, Data bits: 7 bits, Parity: even, Stop bit: 1
- The communication tool can download the appropriate software form A&D home page. Communication parameters are fixed.
- □ In weighing, do not connect the cable. It may be easily influenced by environmental noise.
- □ Use the standard Micro-B USB connector.
- * Reading is available whenever the power is on.
- * Reading and writing of the function from the USB is effective except the weighing mode.

6.4.1. Format

Monitoring Command	
Function code (4 figures) Terminator	Example of the near-zero (F_{-}, OP)
	(רחבטם)
Function code (4 figures) Data (7 figures) Terminator	
Response 1 2 0 8 , + 0 0 0 0 1 0 CR LF	

Storing Command and Response

Function code (4 figures)	Data (7 figures) Terminator	Example of the near-zero (Fnc 08)
Command 1 2 0 8 , ·	+ 0 0 0 0 1 0 CR LF	
Function code (4 figures)	Data (7 figures) Terminator	
Response 1 2 0 8 , ·	+ 0 0 0 0 1 0 CR LF	

* The response of the monitoring command is the same as the storing command.

 "+999999" means an irregular response. Ex.: In case that the function code is not correct and the command is not perform.

6.4.2. Monitoring the Function Setting

It specifies a function code in the command code and monitors the data.

Command	Ν	Ν	Ν	Ν	CR	LF									
Response	Ν	Ν	Ν	Ν	,	±	Х	Х	Х	Х	Х	Х	CR	LF	

NNNN is code, ±XXXXXX is numerical number.

6.4.3. Storing the Function Setting

It specifies a function code in the command code and stores the data.

Command

Response

Ν	Ν	Ν	Ν	,	±	Х	Х	Х	Х	Х	Х	CR	LF
Ν	Ν	Ν	Ν	,	±	Х	Х	Х	Х	Х	Х	CR	LF

NNNN is code, ±XXXXXX is numerical number.

- * In case of parameter type, store branch number.
- * Fnc I (Key switch disable) is a decimal.

6.4.4. Monitoring the Whole Function Settings

Functions of all can be monitored at once. It can make a list of functions.

Command N N N N CR LF

NNNN is command.

Command code	Description
0999	All functions
1000	Calibration
1100	Linearity
1200	Basic
1300	Hold
1600	Control I/O
1700	Standard serial output
1900	Flow rate
2000	Analog output

6.4.5. Monitoring Each Piece of Data

Each function can be monitored.

Command N N N N CR LF

NNNN is command.

Command code	Description
0101	Program version
0102	Serial No.(lower 5 digits)
0103	Program checksum
0104	FRAM checksum
0201	Gross count
0202	Net count
0203	Tare count
0204	Load cell output. Scale : 1 nV/V
0205	Load cell output. Scale : 10 nV/V

7. Maintenance7.1. Error Messages

If an error message is displayed, use the following countermeasure.

Error message	Cause	Countermeasure			
ES Er	Program checksum error	Repairer is required.			
Ad Er	Data can not be acquired from the A/D converter.	Repairer is required.			
FrAEr	Correct data can not be read from the nonvolatile memory (FRAM).	Initialize the module. If not be resolved, repairer is required.			
E Err	Calibration data is incorrect.	Perform the calibration			
E Er X	Calibration error.	Refer to "5.4.7. Error Codes for the Calibration". x: error number			
Errdt	The setting value is out of range.	Check the setting value.			

7.2. Check Mode

The check mode can be used to check the performance of the display, key switches and external I/O.

7.2.1. Entering to the Check Mode

- Step 1 Press the **F** key while pressing and holding the **ENT** key (**ENT** + **F**) to display F_{DC} . To return to the weighing mode, press the **ESC** key.
- Step 2 Press the \rightarrow key while pressing and holding the **ENT** key (\rightarrow + **ENT**) to display $\underline{L}H_{c}$ of the check mode. Press the **ENT** key to display the check item.
- Step 3 Select the check item using the ♠ key. Press the ENT key to enter to it. Press the ESC key when exiting it.

Display symbol	Item
СНЕЕЯ	Key check
[H ,o	Control I/O check
CH CL	Standard serial output check
[HAn	Analog output (IOUT1) check
[HAn2	Analog output (IOUT2) check
СН ЯЈ	A/D converter output check (Load cell check)
[H in	Internal count check
[HP-9	Program version
[H Sn	Serial number
[5P-9	Program checksum
[SF-A	Memory checksum
EF dE	[-Fnc check ([-F]] to [-F28)

7.2.2. Verifying the Switch Operation

When pressing the key, the corresponding segment moves. "S" & "S". If stopping the current check mode, press the **ESC** key twice.

7.2.3. Checking the Control I/O

When pressing the \checkmark key during displaying the terminal number of the control I/O in order, its output turns on in order (*aut* 1 is all OFF). When turning on the input of the control I/O, its LED illuminates.

7.2.4. Checking the Standard Serial Output

Test data "ST, GS, +00000.0kg<CR><LF>" is output using a preset baud rate when the **ENT** key is pressed every time.

7.2.5. Checking the Analog Output (IOUT1 and IOUT2)

The number that is in the red dot square in the figure to the right indicates the analog output power value (in this case, it is 2mA output).

Increase value by pressing the key.

Decrease value by pressing the \rightarrow key.

(Analog output power value is also linked.)

* The analog output range is from 2mA to 22mA.

7.2.6. Monitoring the A/D Converter (for Load Cell Output)

The voltage output rate of the load cell is displayed in unit of mV/V . Example : When the internal counts is 1.2345 mV/V and the output rate is above ±7 mV/V, a damage or a connection error of the load cell may be cause. Refer to "**7.5. Verifying the Load Cell Connections Using Multimeter**".

7.2.7. Monitoring the Internal Value

The current internal count (10 times of weighing value) is displayed. When the internal count is 123, the example display is as follows:

7.2.8. Monitoring the Program Version

Program version is displayed. Example : Version 1.00 is as follows:

7.2.9. Monitoring the Serial Number

Last five digits of serial number is displayed.

7.2.10. Monitoring the Checksum of the Program

Checksum of the program is displayed. Example : Checksum is EF.

7.2.11. Monitoring the Checksum of an Internal FRAM

Checksum of FRAM is displayed. Memory of the general function is not checked. Example : Checksum is EF.

7.2.12. Displaying Function Parameters for the Calibration ($[-F_0] | \sim 2B$)

The calibration function can be displayed.

.8888

7.3. Initializing Parameters

The initialization mode restores the parameters of the default values to the FRAM. Three types of initialization mode are available as shown below.

Initialization mode Display		Description		
RAM initialization	וחו ר	RAM memory is initialized. The center of zero and tare value will be restored to 0.		
General functions initialization	in i F	Data of the general functions stored in the FRAM and the RAM are reset to factory settings.		
All data initialization	in i A	All data stored in the FRAM, general functions and RAM are initialized. Data related to calibration is also initialized, so calibration must be performed again.		

7.3.1. Initializing Mode for RAM and Function Parameters

Step 1	Press the F ke	ey while pressing and holding the ENT key (ENT + F) to
	display Fnc	of the general functions mode. To return to the weighing mode,
	press the ESC	key.

Step 2	Press the	→	key	while pressing and holding the	ENT	key (→	+	ENT)
	to display	EHc	-	of the check mode.						

Step 3 Select the initialization mode <u>, , ,</u> using the **h** key. Press the **ENT** key.

Step 4 Select an item to be initialized using the \bigstar key. Press the **ENT** key.

Step 5Check that all LED status are blinking.If performing the initialization, press the ENT key for 3 seconds or more.After initialization, all segments light and return to the weighing mode.If canceling the initialization, press the ESC key to return to the weighing mode.

7.3.2. Initializing the Whole Data

- Step 1In the OFF mode (Standby: While turning off the module),Press F + ENT key to display ERL of the calibration mode.To return to the weighing mode, press the ESC key.
- Step 2 Press the **ENT** key to enter to the calibration mode.
- Step 3Press the ▲key four times to select the all initialization mode and press theENTkey.
- Step 4Check that all LED status are blinking.If performing the initialization, press the ENT key for 3 seconds or more.After initialization, all segments light and return to the weighing mode.If canceling the initialization, press the ESC key to return to the weighing mode.
- * $[-F29 \sim [-F32]$ is adjusted value of analog output. Please write down the values of calibration function in $[-F29 \sim [-F32]$ before initialization and then to set the values of them.

7.4. Verifying the Load Cell Connections (DIAGNOS) 7.4.1. Guideline to Verify the Load Cell Connections

The faulty wiring or disconnection of the load cell can be checked using the AD-4430A. This verification is useful for new settings, pre-measurement inspections and periodic inspections.

No.	Diagnostic item	Diagnostic point	Judgment Criteria (Generally)
1	Load cell input voltage	$Between \ SEN{+} \Leftrightarrow \ SEN{-}$	3 V or more
2	SEN+ voltage	Between SEN+ \Leftrightarrow AGND	4 V or more
3	SEN- voltage	Between SEN- ⇔ AGND	1 V or less
4	Load cell output voltage	Between SIG+ ⇔ SIG-	Within ±35 mV
5	Load cell output rate	Between SIG+ ⇔ SIG-	Within ±7 mV/V
6	SIG+ voltage	Between SIG+ ⇔ AGND	1 V to 4 V
7	SIG- voltage	Between SIG- ⇔ AGND	1 V to 4 V
8	Internal temperature		-20 °C to +60 °C

- AGND : Internal analog circuit ground
- EXC- : Load cell excitation voltage (-)
- EXC+ : Load cell excitation voltage (+)
- : Load cell output (-) SIG-
- SIG+ : L

- SHLD: Shield. Frame ground.
- SEN-: Sensing input (-)
- SEN+ : Sensing input (+)

_oad cell output (+)	Load cell	Extension cable	AD-4430A
	Blue wire		Terminals
	White wire		
Cable	Red wire		4 00 SEN-
		<u> </u>	2 0 SEN+
	Yellow wire	V	

Illustration 12 Wire name of load cell

7.4.2. Verifying Load Cell Connections with Switch Operation

Step 1	Press the F key while pressing and holding the ENT key (ENT + F) to display $F_{\Box C}$.
	To return to the weighing mode, press the ESC key.
Step 2	Press the \rightarrow key while pressing and holding the ENT key (\rightarrow + ENT) to display the check mode $\boxed{[H_c]}$.
Step 3	Press the \uparrow key twice to select the "load cell connections diagnosis" \underline{d} , \underline{RL} and then press the \underline{ENT} key to enter to it. Each item is automatically diagnosed. After approx.16 seconds, the diagnosis is displayed. Also, each diagnosis is checked by selecting items pressing the \uparrow key. Press the \underline{ESC} key to return to display \underline{d} , \underline{RL} .

7.4.3. Verifying Using the Control I/O

Step 1When the input terminal of the control I/O set to "diagnose" remains "ON" for 1
second or more, the display shows d .and checks each item automatically.After approx. 16 seconds, the diagnosis is displayed.

* If the control I/O is set to "OFF", the diagnosis is finished. Keep "ON" until the diagnosis is displayed.

Step 2 When turning off the input terminal of the control I/O set to "diagnose", AD-4430A returns to the weighing mode.

7.4.4. Display and Output of Verification

Items that have not been diagnosed are also totaled as errors. Refer to **"7.4.1. Guideline to Verify the Load Cell Connections"** concerning the detail of the diagnosis point and judgment criteria.

When scanning and changing items, d, RG is displayed.

The diagnostic results of the scanning are displayed as follows.

There is no errors : <u>Good</u>

There is an error : $\boxed{E_{r} X X}$ (a code X X X in which error codes are accumulated.)

When more than one error are occurs, the total value of the error codes are displayed. Ex. When errors are Load cell excitation voltage (No.1) and Internal temperature (No.8):

1 + 128 = 129 129 is the error code of X X X

No.	Check item	Status LED G N H S Z X	Display Range	Error Code
1	Load cell excitation voltage	$\bullet \bullet \circ \circ \circ \bullet$	0.001 V	1
2	SEN+ voltage	$\bullet \bullet \circ \circ \bullet \circ$	0.001 V	2
3	SEN- voltage	$\bullet \bullet \bigcirc \bigcirc \bullet \bullet$	0.001 V	4
4	Load cell output voltage	$\bullet \bullet \circ \bullet \circ \circ$	0.001 mV	8
5	Load cell output rate	$\bullet \bullet \circ \bullet \circ \bullet$	0.0001 mV/V	16
6	SIG+ voltage	$\bullet \bullet \circ \bullet \circ \circ$	0.001 V	32
7	SIG- voltage	$\bullet \bullet \circ \bullet \bullet \bullet$	0.001 V	64
8	Internal temperature	$\bullet \bullet \bullet \circ \circ \circ$	0.1 °C	128

7.5. Verifying the Load Cell Connections Using Multimeter

The load cell connection can be checked easily using a digital multimeter. The measurement points of the load cell connection are as follows : When a summing box is used, the same measurement points inside of it must be measured.

Illustration 13 Connection check of load cell

7.5.1.	Check List of	the Load cell	Connections

Measurement points		Description	Judgment	
EXC+	SEN+	A drop voltage of cable on EXC+ side.	Normally it is 100 mV or less. However, it may	
SEN-	EXC-	A drop voltage of cable on EXC- side.	used. For the 4–wire connection, it must be 0 V.	
EXC+	EXC-	Input voltage	Normal range is between 4.75 V to 5.25 V.	
SIG-	EXC-	Center point voltage	It is approximately 2.5 V of a half of excitation voltage.	
SIG+	SIG-	Output voltage	Generally it is within 0 V to 15 mV. Theoretical value is calculated from the load cell rated capacity, actual load and excitation voltage.	

When the module does not operate properly, write the required items in the table below and contact your local A&D dealer.

Item	Usage circumstances, model number, rated, measurement value etc.	Note	
Connection method	 4-wire connection 6-wire connection 	When using the 4-wire connection, connect between EXC+ and SEN+ and between EXC- and SIG	
Model name & number			
Rated capacity	[Unit]		
Rated output	[mV/V]		
Allowable overload	[%]		
The number of load cells used	[pieces]		
Use of summing box			
Length of the extension cable	[m]	Length between the module and the summing box.	
Initial load of weighing module	[Unit]		
Minimum division of weighing module	[Unit]	All digits including decimal figures. Ex: 0.002kg	
Capacity of weighing module	[Unit]	All digits including decimal figures. Ex: 10.000kg	
Output of load cell using [mV/V]		Between –0.1mV/V and rated sensitivity of load cell (using initial load)	
Output of load cell using capacity or arbitrary load.	Load cell output at Load [Unit] [mV/V]	When loaded to capacity, the output value of the initial load + the rated output value of the load cell. (It must be within allowable overload.)	

Measurement points		Measurement contents	Measurement result
EXC+	SEN+	A drop voltage of cable on EXC+ side.	[mV]
EXC+	EXC-	Input voltage	[V]
SEN-	EXC-	A drop voltage of cable on EXC- side.	[mV]
SIG-	EXC-	Center point voltage	[V]
SIG+	SIG-	Output voltage	[mV]

7.6. The Parameter List For The Function

When performing maintenance, use the following list as a memorandum. When making inquiries about the product, inform your local A&D dealer of the user settings.

7.6.1. The Calibration Function ([Fnc)

Item Function or	ode	Description, Range and Default value	User setting
	01	0:Noused 1:a 2:ka 3:t	
Linit		$1 \cdot N$ 5 · kN	
	02	0.0 1.0 2.000	
Decimal point position	102	3: 0.000 4: 0.0000	
Г-ЕЛЭ 10	03	1.1 2.2 3.5	
Minimum division		4:10 5:20 6:50	
С-ГОЧ 10	04		
Maximum capacity	-	1 to <u>70000</u> to 99999	
<i>L</i>-FOS 10	05		
Zero range		0 to 2 to 100	
<i>E-FDE</i> 10	006		
Zero tracking time		0.0 to 5.0	
[-F07 10	07		
Zero tracking width		0.0 10 9.9	
<i>C-FOB</i> 10	80		
Stability detection time			
<i>C-F09</i> 10	09	0 to 0 to 100	
Stability detection width		0 to 2 to 100	
E-F ID 10)10	Or Dischlas hath functions	
Tare and zero at unstable	e	0: Disables both functions.	
weight value	l		
E-F I I 10)11	0: Disables tare	
Tare when the gross	[1: Enables tare	
weight is negative			
E-F 12 10	12	0: Disables output	
Output when out of range	e	1. Enables output	
and unstable	l		
<i>L-F I3</i> 10)13	1: Gross weight < -99999	
Exceeding negative gros	S	2: Gross weight < Negative maximum capacity	
weight		3: Gross weight < -19d	
E-FI4 10)14	1. Net weight < -99999	
Exceeding negative net	l	2 Net weight < Negative maximum capacity	
weight			
E-F IS 10)15	0: Disables.	
Clear the zero value		1: Enables.	
E-F 16 10)16	0 : Not used.	
Zero setting when power	r I	1 : Use.	
is turned on			
L-F 17 10)17	-7.0000 to 0.0000 to 7.0000	
Input voltage at zero			

Item Function code Name	Description, Range and Default value	User setting
<i>L - F IB</i> 1018 Span input voltage	0.0100 to 3.2000 to 9.9999	
<i>[-F I]</i> 1019 Weight against span Input voltage	1 to 32000 to 99999	
[-F261026Gravity acceleration of the calibration place	9.7500 to 9.8000 to 9.8500	
[-F27]1027Gravity acceleration of useplace	9.7500 to 9.8000 to 9.8500	
L-F2B1028Suppression of the holdfunction	0: Permission. 1: Prohibition.	
<i>E-F29</i> to <i>32</i> 1029 to 1032	Reserved internally	

7.6.2. The Linearization Function (L-Fnc)

Item Function code	Description, Range and Default value	User setting
L-FOI 1101		
Number of input points		
L-FO2 1102	7,0000 to $0,0000$ to $7,0000$	
Linear-zero		
L-FD3 1103	0 to 99999	
Setting value for linear 1	0 0 33333	
L-FD4 1104	0.0000 to 0.0000	
Span at linear 1		
L-FDS 1105	0 to 99999	
Setting value for linear 2	0 10 99999	
L-FD6 1106	0.0000 to 0.0000	
Span at linear 2		
L-FD7 1107	0 to 00000	
Setting value for linear 3	0 10 99999	
L-FOB 1108	0.0000 to 0.0000	
Span at linear 3	0.0000 10 9.9999	
L-FO9 1109	0 to 00000	
Setting value for linear 4	0 0 00000	
L-F ID 1110	0,0000 to 0,0000	
Span at linear 4	0.0000 10 9.9999	

Item Function Name	n code	Description, Range and Default value	User setting
Fnc [] Key switch disal	1201 b le	0000 to 1111	
Fnc02 F key	1202	 0: None 1: Manual print command 2: Hold 3: Operation switch 1 4: Operation switch 2 5: Display exchange 6: Tare clear 7: Zero clear 8to 11: Reserved internally 12: mV/V monitor 13: Digital filter 2 14: Display output data selected in <i>An</i> 11 15: Display output data selected in <i>An</i> 21 	
Fnc[]] Display rewrite r	1203 ate	 1: 20 times/sec. 2: 10 times/sec. 3: 5 times/sec. 	
Fnc04 x display	1204	0: None 1: Zero tracking in progress 2: Alarm 3: Display operation switch status as on or off 4: Near-zero 5: HI output 6: OK output 7: LO output	
Fnc05 Digital filter 1	1205	0: None 8:10.0 Hz 16: 0.7 Hz 1: 100.0 Hz 9: 7.0 Hz 16: 0.7 Hz 2: 70.0 Hz 10: 5.6 Hz 12: 2.6 Hz 3: 56.0 Hz 11: 4.0 Hz 12: 2.8 Hz 4: 40.0 Hz 12: 2.8 Hz 13: 2.0 Hz 6: 20.0 Hz 14: 1.4 Hz 7: 14.0 Hz 15: 1.0 Hz	
Fnc05 Digital Filter 2	1206	0: None8:10.0 Hz16: 0.7 Hz1: 100.0 Hz9: 7.0 Hz17: 0.56 Hz2: 70.0 Hz10: 5.6 Hz18: 0.40 Hz3: 56.0 Hz11: 4.0 Hz19: 0.28 Hz4: 40.0 Hz12: 2.8 Hz20: 0.20 Hz5: 28.0 Hz13: 2.0 Hz21: 0.14 Hz6: 20.0 Hz14: 1.4 Hz22: 0.10 Hz7: 14.0 Hz15: 1.0 Hz23: 0.07 Hz	
Fnc[]] Hold	1207	1: Normal hold2: Peak hold3: Averaging hold	
Fnc08 Near-zero	1208	-99999 to 10 to 99999	

7.6.3. The Basics Function (Fnc F)

Item Function code Name	Description, Range and Default value	User setting
Fnc []] 1209 Comparison mass at near-zero	1:Gross weight2:Net weight	
Fnc ID 1210 Upper limit value	-99999 to 10 to 99999	
Fnc II 1211 Lower limit value	-99999 to -10 to 99999	
Fnc 12 1212 Comparison mass of upper and lower limit	1:Gross weight2:Net weight	

7.6.4. The Hold Function (HLd F)

Item Function Name	code	Description, Range and Default value	User setting
HL dD I Averaging time	1301	0.00 to 9.99	
HL d02 Start wait time	1302	0.00 to 9.99	
HLdD3 Condition of automatic start	1303	0: Not used 1: Above the near-zero, and stable 2: Above the near-zero	
HLdDY Release using control input	1304	0: Do not release 1: Release	
HL d05 Release time	1305	0.00 to 9.99	
HL dDb Release using fluctuation range	1306 e	0 to 99999	
HLdD7 Release at the near-zero	1307	0: Do not release 1: Release	

7.6.5. The Flow Rate Function (Fr F)

Item Function code Name	Description, Range and Default value	User setting
Fr DI 1901 Filter of flow rate 1	1 : Digital filter 1	
Fr 02 1902	2 : Digital filter 2	
Filter of flow rate 2		
Fr []] 1903		
Damping time of flow rate 1	Suppress shaking of flow rate.	
Fr 🛛 4 1904	Scale: 1 sec.	
Damping time of flow rate 2		

	Item Function code Name	Description, Range and Default	value	User setting
Z	0 <i>ا</i> ا مر Function of IN1	0 : Not used 1 to 6: Reserved internally 7 : Zero	0 to 7 to 30	
	ہ 1602 1602 Function of IN2	8 : Tare 9 : Hold 10 : Gross / Net exchange	0 to 8 to 30	
	ە 03 1603 Function of IN3	11 : Diagnose 12 : Print command	0 to 30	
	04 1604 Eunction of IN4	22 : Zero clear 23 : Tare clear	0 to 30	
	ە 05 1605 Function of IN5	25 : Prohibit update of flow rate 1 26 : Prohibit update of flow rate 2	0 to 30	
	ە 1606 ق Function of IN6	7 : Initialize flow rate 1 8 : Initialize flow rate 2 9 : Specify flow rate in An 11 0 : Specify flow rate in An 21	0 to 30	
	<i>ا ا</i> ا Function of OUT1	0 : Not used 1 to 8: Reserved internally 9 : Stability	0 to 18 to 36	
	ہ ا∂ 1612 Function of OUT2	10 : Over capacity 11 : Net display 12 : During tare	0 to 9 to 36	
0	<i>ا</i> ما 13 ا Function of OUT3	13 : Hold 14 : Hold busy	0 to 36	
	1614 IY ام 1614 Function of OUT4	16 : OK output 17 : LO output	0 to 36	
T	is 1615 امر Function of OUT5	19 to 29: Reserved internally	0 to 36	
	ا مە اڭ 1616 Function of OUT6	31 : In weighing (1Hz) 32 : In weighing (50Hz)	0 to 36	
	17 1617 Function of OUT7	33 : Alarm34 : Output operation switch is on or off35 : Approximate flow rate value of	0 to 36	
	1618 او <i>ن اB</i> Function of OUT8	flow rate 1 36 : Approximate flow rate value of flow rate 2	0 to 36	

7.6.6. The Control I/O Function (10 F)

	Item Fu Name	unction code	Description, Range and Default value	User setting
OUT	って! OUT1 Logi	1621 c	 Inverting output If data is "0" level, the output transistor conducts (ON). Non inverting output If data is "1" level, the output transistor conducts (ON). 	
	ाव 22 OUT2 Logi	1622 C		
	ाव 23 OUT3 Logi	1623 c		
	ाव २५ OUT4 Logi	1624 C		
	ං 25 OUT5 Logi	1625 c		
	ाव २६ OUT6 Logi	1626 C		
	ہ 27 OUT7 Logi	1627 C		
	ia 28 OUT8 Logi	1628 C		

7.6.7. The Standard Serial Output Function ([L F])

Item Function code Name	Description, Range and Default value	User setting
EL D I 1701 Serial data	1: weighing display 2: Gross 3: Net 4: Tare 5: Gross / Net / Tare	
[L]]21702Communication mode	1: Stream 2: Automatic print 3: Manual print	
<i>[L [] 3</i> 1703 Baud rate	1: 600 bps 2: 2400 bps	

lte Na	m Function code	Description, Range and Default value	User setting
IOUT1	An II 2011 Output data	1: Weighing display (Digital filter 1)2: Gross (Digital filter 1)3: Net (Digital filter 1)4: Weighing display (Digital filter 2)5: Gross (Digital filter 2)6: Net (Digital filter 2)7: Flow rate 18: Flow rate 29: Flow rate 1 or Flow rate 2 (Select in control input)	
	fin 12 2012 Mass/flow rate at 4mA output	Select mass/flow rate by setting output data (<i>An II</i>) Decimal point position linkage: • Mass : [-F[]2 • Flow rate : <i>An IS</i> (setting magnification of flow rate) + [-F[]2 -99999 to 0 to 99999	
	Rn I3 2013 Mass/flow rate at 20mA output	Select mass/flow rate by setting output data (<i>An II</i>) Decimal point position linkage: • Mass : [-F[]2 • Flow rate : <i>An IS</i> (setting magnification of flow rate) + [-F[]2 -99999 to 70000 to 99999	
	PinI42014Flow rate unit	1: Seconds 2: Minutes 3: Hours	
	Rn IS 2015 Flow rate setting magnification (times)	1:1 2:10 3:100 4:1000 5:10000	

7.6.8. The Analog Output Function $(R_n F)$

Item Function code Name		Description, Range and Default value	User setting
IOUT2	류고 2021 Output data	1: Weighing display (Digital filter 1)2: Gross (Digital filter 1)3: Net (Digital filter 1)4: Weighing display (Digital filter 2)5: Gross (Digital filter 2)6: Net (Digital filter 2)7: Flow rate 18: Flow rate 29: Flow rate 1 or Flow rate 2 (Assign to input terminals)	
	An 22 2022 Mass/flow rate at 4mA output	Select mass/flow rate by setting output data (Rn 2 l) Decimal point position linkage: • Mass : [-FD2 • Flow rate : Rn 25 (setting magnification of flow rate) + [-FD2 -99999 to 0 to 99999	
	An 23 2023 Mass/flow rate at 20mA output	Select mass/flow rate by setting output data (fln 2 l) Decimal point position linkage: • Mass : [-FD2 • Flow rate : fln 25 (setting magnification of flow rate) [-FD2 -99999 to 70000 to 99999	
	Rn 24 2024 Flow rate unit	1 : Seconds 2 : Minutes 3 : Hours	
	Rn 25 2025 Flow rate setting magnification (times)	1 1 2:10 3:100 4:1000 5:10000	

MEMO

MEMO

A&D Company, Limited 3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013, JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-6148

A&D ENGINEERING, INC.

 1756 Automation Parkway, San Jose, California
 95131, U.S.A.

 Telephone: [1] (408) 263-5333
 Fax: [1] (408)263-0119

A&D INSTRUMENTS LIMITED

Unit 24/26 Blacklands Way, Abingdon Business Park, Abingdon, Oxfordshire OX14 1DY United Kingdom Telephone: [44] (1235) 550420 Fax: [44] (1235) 550485

A&D AUSTRALASIA PTY LTD

32 Dew Street, Thebarton, South Australia 5031, AUSTRALIA Telephone: [61] (8) 8301-8100 Fax: [61] (8) 8352-7409

A&D KOREA Limited

한국에이.엔.디(주)

서울특별시 영등포구 국제금융로6길33 (여의도동) 맨하탄빌딩 817 우편 번호 150-749 (817, Manhattan Bldg., 33. Gukjegeumyung-ro 6-gil, Yeongdeungpo-gu, Seoul, 150-749 Korea) 전화: [82] (2) 780-4101 팩스: [82] (2) 782-4280

OOO A&D RUS

ООО "ЭЙ энд ДИ РУС"

121357, Российская Федерация, г.Москва, ул. Верейская, дом 17 (Business-Center "Vereyskaya Plaza-2" 121357, Russian Federation, Moscow, Vereyskaya Street 17) тел.: [7] (495) 937-33-44 факс: [7] (495) 937-55-66

A&D INSTRUMENTS INDIA PRIVATE LIMITED 🛛 ऐक्ष्डी इन्स्ट्रयूमेन्ट्स इण्डिया प्रा0 लिमिटेड

509, उद्योग विहार , फेस –5, गुड़गांव – 122016, हरियाणा , भारत (509, Udyog Vihar, Phase–V, Gurgaon – 122 016, Haryana, India) फोन : 91–124–4715555 फैक्स : 91–124–4715599