Strain Amplifier Dynamic Strain Measuring Instruments

AC Bridge Type : AS3503 / AS3603 / AS3703 / AS3803 / AS3903 DC Bridge Type : AS2503 / AS2603

Discover Precision

www.aandd.jp

New features added on superior basic performance ! Achieved more accurate and reliable measurements !

The new AS3000 Series of Strain Amplifiers inherit the excellent performance of the previous models equipped with unique Bridge Check function, Cable Length Compensation function, and Noise Resistant design, and newly added Auto-Range function and E-terminal Switching function, enabling shorter measurement preparation time, highly accurate and high-quality strain measurement. While maintaining compatibility with the previous model, operability has been greatly improved, and settings for each function have been simplified for ease-of-use. Including a noise resistant type, two models with a response frequency of 5 kHz have been added, resulting five models in the lineup.

AC Bridge Type for General-purpose - AS3503 / AS3603 / AS3703

Isolated between input/output and power supply system! Aids strain measurement with reliable quality!

The AS3503/AS3603/AS3703 are AC strain amplifiers with high sensitivity, high stability and low noise, and suitable for measurement using strain gauges.

AS3603 responsivity: DC to 2 kHz, AS3503 responsivity: DC to 5 kHz, AS3703 responsivity: DC to 10 kHz. All are highly stable and low noise products. The balance circuit is equipped with an automatic capacitance elimination function, allowing the capacitance balance to be adjusted at any time.

Features

High sensitivity [AS3603]

Sensitivity \pm 10 V output at \pm 200 x 10⁻⁶ strain input (when BV = 2 V)

•Various functions with excellent operability.

Bridge Check, Cable Length Compensation, Auto-range and Auto-balance can be executed by the touch of a button.

•High responsivity DC to 5 kHz [AS3503] DC to 10 kHz [AS3703]

•Operable even under severe temperature conditions. Temperature stability (Zero Point) Within $\pm 0.1 \times 10^{-6}$ strain/°C Temperature stability (Sensitivity) Within $\pm 0.02\%$ /°C Operating temperature range: -10°C to 50°C

AC Bridge Type with Noise Resistant - AS3803 / AS3903

Isolated between input/output and power supply system! Noise-resistant design for harsh environments!

The AS3803/AS3903 are isolated between input/output and power supply systems, respectively, and are equipped with Noise-resistant circuits that excel in Common-mode Noise Elimination. As a result, it is possible to reduce the effect of noise generated by Common Mode Voltage from power lines, high power equipment, etc., as well as noise generated when thyristors and power transistors are opened and closed, and to obtain an output with a high SN ratio even in an environment where noise is easily mixed in. Suitable for sites where Common Mode Noise is a concern, such as heavy electrical equipment, steel, heavy industry, plants, and railway vehicles.

Features

•High sensitivity [AS3803] Sensitivity ± 10 V output at ± 200 x 10⁻⁶ strain input (when BV = 2 V)

High responsivity
 DC to 5 kHz [AS3903]

Noise resistant design

•Various functions with excellent operability.

Bridge Check, Cable Length Compensation, Auto-range, and Auto-balance can be executed by the touch of a button.

•Operable even under severe temperature conditions. Temperature stability (Zero Point) Within $\pm 0.1 \times 10^{-6}$ strain/°C Operating temperature range: -10°C to 50°C

Uses our unique circuit method that is resistant to Common-mode Noise rejection.

DC Bridge Type of Wide Bandwidth AS2503 / Isolated Type AS2603

Excellent Non-linearity and High Response Frequency ! High Precision DC Strain Amp!

The AS2000 series is suitable for high-precision measurement with strain gauge transducers (load, pressure, torque, acceleration, etc.). The bridge power supply uses a constant voltage power supply of 2 V to 10 V DC, and it has high voltage sensitivity and excellent non-linearity, and so highly accurate measurement is possible using a wide variety of strain gauge transducers. The high response frequency of DC to 500 kHz [AS2503] also enables high-speed strain measurement such as impacts.

Features

• Wide bandwidth

Response frequency DC to 500 kHz [AS2503]

- High input impedance, excellent non-linearity Ensures input impedance 10 MΩ, non-linearity ±0.01%/ FS. Highly accurate measurement is possible even with
- transducers with high resistance. [AS2503] • Prevents erroneous operation

Each setting key can be locked (except for CAL)

Functions

Bridge Check function

The "Bridge Check" function automatically detects disconnections, shorts, and cable breaks at each circuit of the bridge. The easy detection of disconnected or short-circuited wires reduces measurement preparation time and helps prevent problems with the input section.

Auto-range function

The "Auto-range function" automatically adjusts the measurement range to the specified output voltage when the calibration value set in the Internal Calibrator is applied. Output voltage can be selected from 5 V, 8 V, and 10 V. Even those unfamiliar with strain amplifiers can easily prepare one for measurement.

 Input/output isolation ideal for system applications [AS2603]

Isolation circuits are used between input/output and power supply.

- •Loaded with various filters (high-pass/low-pass filters)
- •Can be used as a voltage amplifier.

Can be used as a high precision voltage amplifier with a maximum gain of 10,000 times [AS2503] or 5,000 times [AS2603].

Cable Length Correction function

If the distance between the bridge circuit and the amplifier is long, the bridge voltage will drop due to the conductor resistance of the cable. In the past, remote sensing with a 6-core cable and compensation by numerical setting (cable length, wire diameter, etc.) were used. (Remote sensing was not possible with the AC strain amp using 6-core cable.) This series of products employs a unique automatic compensation circuit to compensate for bridge voltage drops even with 4-core cables, enabling highly accurate strain measurement.

E-terminal Switching function

The "E terminal switching function" switches the potential of the shield (E terminal) of the sensor cable to the [input COM] or the [GND] of the amplifier, and performs shielding measures suitable for the installation environment of the sensor bridge.

If the E terminal is not connected to the chassis of a tranbsducer, etc., setting the switch to [Input COM] will increase the shielding effect and reduce noise intrusion.

Displays, control knobs and rear panel

Selection of strain amplifier

Bridge power system	AC strain amplifier (AC bridge type)	DC strain amplifier (DC bridge type)
Recommended sensors	 Various strain gauges Load, Pressure, Displacement, Acceleration, Torque (Strain gauge type transducers) 	 Strain gauge type transducers for Load, Pressure, Displacement, Acceleration, Torque, etc. Various strain gauges (Impact strain)
Fasturas	Better S/N ratio and higher sensitivity than DC bridge type DC strain amplifiers. Because it is an AC amplifier, it does not include the commercial power supply frequency, which is a major noise source, in the amplification bandwidth, making it extremely resistant to extraneous noise. This amplifier is especially effective for sensors which output with parallel wires, such as strain gauges.	55
Noise	0	X
Sensitivity	Ô	X
Non-linearity	X	0
Response frequency	X	0

	Product	AC Strain Amplifier (Isolated)				DC Strain	Amplifier	
		General-purpose, low bandwidth type	General-purpose, medium-bandwidth type	General-purpose, wide bandwidth type	Noise-resistant, low bandwidth type	Noise-resistant, medium-bandwidth type	Wide bandwidth type	Isolated type
	Model	AS3603	AS3503	AS3703	AS3803	AS3903	AS2503	AS2603
	Bridge Voltage			DC 2, 3, 5, 9, 10 V				
	power supply Frequency	5 kHz sine wave	12.5 kHz sine wave	25 kHz sine wave	5 kHz sine wave	12.5 kHz sine wave		
Main S	Valtaga consitivity	At $\pm 200 \times 10^{-6}$ strain ± 10 V output (when RANGE=200, FINE = x1, BV = 2 V)	At \pm 500 \times 10 ⁻⁶ strain \pm 10 V output (when RANGE = 500, FINE = x1, BV = 2 V)	At \pm 500 \times 10 ⁻⁶ strain \pm 10 V output (when RANGE = 500, FINE = x1, BV = 2 V)	At $\pm 200 \times 10^{-6}$ strain ± 10 V output (when RANGE=200, FINE = x1, BV = 2 V)	At \pm 500 \times 10 ⁻⁶ strain \pm 10 V output (when RANGE = 500, FINE = x1, BV = 2 V)	±10 V output	$\pm 2,000 \times 10^{-6}$ at strain $\pm 10 \text{ V}$ output (when RANGE = 2k, no FINE,BV = 2 V)
peci		DC to 2kHz ± 10%	DC to 5kHz ± 10%	DC to 10kHz ± 10%	DC to 2kHz ± 10%	DC to 5kHz ± 10%	DC to 500kHz +1,-3dB	DC to 100kHz +1,-3dB
ĉif		Within ±0.02%/°C	Within ±0.02%/°C	Within ±0.02%/°C	Within $\pm 0.05\%$ /°C	Within ± 0.05%/°C	Within ±0.01%/°C	Within ±0.01%/°C
ici	Zero-point stability			thin \pm 0.1 $ imes$ 10 ⁻⁶ strain/			Within ±1 ×	
atins		±0.1%/FS	±0.1%/FS	±0.2%/FS	±0.1%/FS	±0.1%/FS		Within \pm 0.05%/FS
าร	N	2.0×10^{-6} strain p-p (Input conversion value) at W/B, RANGE = 200, FINE = x1, BV = 2 V	5.0×10^{-6} strain p-p (Input conversion value) at W/B, RANGE = 500, FINE = x1, BV = 2 V	7.0×10^{-6} strain p-p (Input conversion value) at W/B, RANGE = 500, FINE = x1, BV = 2 V		5.0×10^{-6} strain p-p (Input conversion value) at W/B, RANGE = 500, FINE = x1, BV = 2 V	80×10^{-6} strain p-p (Input conversion value) at W/B, RANGE = 1k, FINE = x1, BV = 2 V	at W/B, RANGE = 2k, FINE = x1, BV = 2 V
	ratures	 The high voltage sensitivity of this device makes it effective for measuring minute strain gauge. Input/output isolation is effective for strain measurement in locations with high potential difference between grounds. Especially suited for low-speed, high-precision micro-stress measurement. 	 The high voltage sensitivity of this device makes it effective for measuring minute strain gauge. Input/output isolation is effective for strain measurement in locations with high potential difference between grounds. The 5 kHz response frequency makes it suitable for relatively high-speed stress measurement. 	 The high voltage sensitivity of this device makes it effective for measuring minute strain gauge. Input/output isolation is effective for strain measurement in locations with high potential difference between grounds. The response frequency is as high as 10 kHz, making it suitable for high-speed stress measurement. 	The high voltage sensitivity of this device makes it effective for measuring minute strain gauge. Input/output isolation is effective for strain measurement in locations with high potential difference between grounds. The unique noise- resistant design reduces Common Mode Noise and is suitable for high- precision micro- stress measurement with minimal noise due to the measurement environment.	 The high voltage sensitivity of this device makes it effective for measuring minute strain gauge. Input/output isolation is effective for strain measurement in locations with high potential difference between grounds. The unique noise- resistant design reduces Common Mode Noise and is suitable for high-precision, high-response measurements with minimal noise due to the measurement environment. 	 High response frequency makes it suitable for impact strain measurement. Effective for measurement with small transducers with high response frequency. As a DC strain amplifier, the voltage sensitivity is high and the bridge voltage can be set high, enabling highly accurate measurement even with low-sensitivity strain transducers. Non-linearity is excellent. 	 Input/output isolation makes it suitable for strain measurement in locations with high potential difference between the grounding locations, as well as for high-precision measurement systems. High response frequency is effective for impact strain measurement and measurement and measurement and measurement with small transducers with high response frequency. The bridge voltage can also be set high, enabling highly accurate measurement with a wide variety of strain transducers.
	Measurement by strain gauge O					(
ga	easurement with strain uge transducers	Insducers				()	
Strain measurement at sites O		-	Δ 0 0 0 Δ			2		
Bri	dge Check Method							
the	hen the distance between e measurement point and the easuring instrument is long	veen d the Cable Length Compensation function enables highly accurate measurement by compensating for voltage drop across the bridge voltage.						
Im	pact strain measurement			×			0	
Us	e as a DC amplifier							
		○ · Optimal ○ · Appro	nriate A · Not very and	ropriate X: Not appro	priato BV: Bridge cupr	ly voltage		-

 \bigcirc : Optimal, \bigcirc : Appropriate, \triangle : Not very appropriate, \times : Not appropriate, BV: Bridge supply voltage.

Dynamic Strain Measuring Instruments Strain Amplifier AS3000/2000

Measurement Diagram

Specifications

AC Bridge Type Item AS3603 AS3503 AS3703 AS3803 AS3903 Noise resistant Input noise suppression circuitry Number of channels 1 channel/unit Bridge resistance $60 \sim 1.000 \Omega$ Gauge factor 2.00 0.5 VAC, 2 VAC Voltage Bridge power supply (BV) 12.5 kHz sine wave 25 kHz sine wave 5 kHz sine wave 12.5 kHz sine wave Frequency 5 kHz sine wave Synchronization input/ 2.5 VAC output signal (OSC) **E-terminal Connection** The Shield Wire Potential Switching switch (E-SW) can be used to switch the potential of the E-terminal (Shield Wire) of the input cable Switching function to the input common (COM) or GND (casing ground potential via protective element). Bridge Check (BRC) Detects disconnections and shorts in input bridge circuits with bridge resistance of 120 Ω or more and disconnections in input cables, function and displays the results on LEDs.Function can be turned ON/OFF by FNC setting. Cable Length Compensation Automatic compensation for bridge power supply voltage drop due to cable length to bridge circuit (bridge resistance 120 Ω or more). (CLC) function Function can be turned ON/OFF by FNC setting. **Balaning adjustment** Resistance Deviation: \pm 2% (\pm 10,000 x 10 $^{\circ}$ strain), capacitance imbalance: Approx. 2,000 pF range(Auto-balance) Within $\pm 0.4 \times 10^{-6}$ strain Within $\pm 1.0 \times 10^{-6}$ strain Within $\pm 1.0 \times 10^{-6}$ strain Within $\pm 0.4 \times 10^{-6}$ strain Within $\pm 1.0 \times 10^{-6}$ strain Balancing adjustment (RANGE = 200, FINE = x² (RANGE = 500, FINE = x1, (RANGE = 200, FINE = x1, (RANGE = 500, FINE = x1, (RANGE = 500, FINE = x1 accuracy BV = 2 V) $\dot{B}V = 2V$ $\dot{B}V = 2V$ BV = 2 V) $\dot{B}V = 2V$ ± 200,000 x 10⁻⁶ strain ± 500,000 x 10⁻⁶ strain ± 500,000 x 10⁻⁶ strain ± 200,000 x 10⁻⁶ strain ± 500,000 x 10⁻⁶ strain Maximum input range (RANGE = 20k (RANGE = 50k, FINE = x2.5, BV = 0.5 V) (RANGE = 50k (RANGE = 20k (RANGE = 50k, FINE = x2.5, BV = 0.5 V) \pm 10 V output at \pm 500 x 10⁻⁶ strain (RANGE = 500, $\pm\,10$ V output at $\pm\,200$ $\times\,$ 10 $^{\text{-6}}$ strain (RANGE = 200, \pm 10 V output at \pm 500 imes \pm 10 V output at \pm 500 imes \pm 10 V output at \pm 200 imes 10^{-6} strain (RANGE = 500, 10^{-6} strain (RANGE = 500, 10^{-6} strain (RANGE = 200 FINE = x1, BV = 2 V) Voltage sensitivity FINE = x1, BV = 2VFINE = x1, BV = 2VFINE = x1, BV = 2VFINE = x1, BV = 2V200, 500, 1k, 2k, 5k, 10k, 20k (x10⁵ strain × 500, 1k, 2k, 5k, 10k, 20k, 50k (x10⁵ strain × 500, 1k, 2k, 5k, 10k, 20k, 50k (x10⁻⁵ strain × 200, 500, 1k, 2k, 5k, 10k, 20k (x10⁵ strain × 500, 1k, 2k, 5k, 10k, 20k, 50k (x10⁻⁵ strain × Measurement range (RANGE) 2/BV value), OFF Measuring range fine Continuously variable within the RANGE and adjustable with the FINE knob. Variation can be changed in two steps adjustment (FINE) Internal Calibrator Calibration value range: ± 1 to 9,999 x10⁶ strain, calibration value accuracy: $\pm (0.5\% \text{ rdg} + 0.5 \times 10^6 \text{ strain})$ (+CAL, -CAL) Automatic adjustment of RANGE and FINE so that the output voltage becomes the specified value when the calibration value set in the Auto-range (ARG) Internal Calibrator is applied.Output voltage value (OFF, 5 V, 8 V, 10 V) can be specified by the FNC setting. function $\pm 0.1\%/FS$ ±0.1%/FS ±0.2%/FS ±0.1%/FS Non-linearity ±0.1%/FS Frequency DC to 2 kHz ±10% DC to $5 \text{ kHz} \pm 10\%$ DC to 10 kHz ± 10% DC to 2 kHz \pm 10% DC to 5 kHz \pm 10% characteristic (W/B) High-Pass Filter (HPF) Cutoff frequency: 0.5 Hz, 2-pole Butterworth type (filter drop characteristic -12dB/oct) Cutoff frequency: 10, 30,|Cutoff frequency: 10, 30,|Cutoff frequency: 10, 30,|Cutoff frequency: 10, 30,|Cutoff frequency: 10, 30, Low-Pass Filter (LPF) Within $\pm 0.05\%$ °C. Within $\pm 0.2\%$ /24h Within +0.02%/°C Within +0.2%/24hSensitivity Temperature stability Zero-point Within \pm 0.1 \times 10⁻⁶ strain/° C, \pm 0.5 \times 10⁻⁶ strain/24h $2.0 imes 10^{\circ}$ strain p-p input $|5.0 imes 10^{\circ}$ strain p-p input $|7.0 imes 10^{\circ}$ strain p-p input $|2.0 imes 10^{\circ}$ strain p-p input $|5.0 imes 10^{\circ}$ strain p-p input conversion conversion conversion conversion conversion (W/B, RANGE = 200, | (W/B, RANGE = 500, | (W/B, RANGE = 500, | (W/B, RANGE = 200, FINE = x1, BV = 2 V, at 120 | FINE = x1, BV (W/B, RANGE = 500, FINE = x1, BV = 2 V, at 120 Noise Ω bridge) Ω bridge) Ω bridae) Ω bridae) Ω bridge) OUTPUT1 \pm 10 V \pm 5 mA (2 k Ω load or more), OUTPUT2 \pm 10 V \pm 10 mA (332 k Ω load or more), Output voltage Operable at output resistance 0.5 Ω or less, capacitive load up to 0.1 μ F. Output adjustment OUTPUT2 ADJ (continuously variable from 1 to 1/10 independently) 17-dot LED display for monitoring OUTPUT1, Green LED in the center lights up within approx. Level indication \pm 100 mV and LEDs on both ends blink at approx. \pm 10.5V or more 4 1/2 digit digital display for OUTPUT2 monitor, scaling available with OUTPUT2 ADJ. Decimal point position can be changed by FNC setting. Accuracy: Within ± 0.05% rdg ±1 count **Digital display** Key lock ON/OFF of the operation panel is possible by pressing the key lock button for about 1 second (excluding the calibration Key Lock function value application switch (+CAL, -CAL)) Rear interface connector: D-SUB, 9P, female, Mounting: #4-40 inch screw +CAL and -CAL input, BAL function [Bridge check (BRC), Line length correction (CLC), Auto range (ARG), Auto balance (resistance Remote function balance)], RANGE OFF and KEY LOCK controls are possible by external signal Saving of setup values Save to flash memory 29.4m/s² (50 Hz, XYZ each for 10 minutes) and compliant with MIL-STD-810G-514.6 Vibration resistance Between input terminals (A, B, C, D, E) and the output, and the case: 1 kV AC for 1 minute Between AC power input and signal input, output, and the case: 1.5 kV AC for 1 minute Withstand voltage Between DC power input and signal input: 1 kV AC for 1 minute Between DC power input and signal output, and the case: 500 V AC for 1 minute AC power supply 100 to 120 V AC / 200 to 240 V AC (switchable with [AC power supply voltage switch] on the bottom) 12 VA or less when AC240V, 50/60 Hz DC power supply 10 to 30 V DC 6 VA or less Operating temperature/humidity -10°C to +50°C, within 20% to 85% RH, with no condensation Storage temperature/humidity -20°C to +70°C, within 10% to 90% RH, with no condensation External dimensions H143 x W49.5 x D252 mm (excluding projection)

Weight

Approx. 1.4 kg

DC Bridge Type

Do Bridge Type		400(00
ltem	AS2503 (Wide bandwidth type)	AS2603 (Isolated type)
Number of channels	1 channel/unit	
Bridge resistor	60 to 1,000 Ω	
Gauge rate	2.00	
Bridge power supply (BV)	2, 3, 5, 9, 10 VDC	and shorts in the bridge
Bridge Check (BRC) function	circuit (120 Ω or more) a cable to the input bridge results on LEDs. Function with the setting switch on	and disconnections in the e circuit, and displays the on can be turned ON/OFF the bottom.
Cable Length Compensation (CLC) function	voltage drop due to cabl	n for bridge power supply e length to bridge circuit. ON/OFF with the setting
Equilibrium adjustment range(Auto-balance)		$2\% (\pm 10,000 \times 10^{-6} \text{ strain})$
Equilibrium adjustment accuracy	(RANGE = 1k, FINE = x1, BV = 2 V)	Within $\pm 2.0 \times 10^{-6}$ strain (RANGE = 2k, FINE = x1, BV = 2 V)
Maximum input range	FINE = x2.5, BV = 2 V)	± 250,000 x10 ⁻⁶ strain (RANGE = 100k, FINE = x2.5, BV = 2 V)
Voltage sensitivity	x10 ⁻⁶ strain (RANGE = 1k, FINE = x1, BV = 2 V)	\pm 10 V output at \pm 2,000 x10 ⁻⁶ strain (RANGE = 2k, FINE = x1, BV = 2 V)
Measurement range (RANGE)	1k, 2k, 5k, 10k, 20k, 50k (x10 ⁻⁶ strain \times 2/BV value), OFF	value), OFF
Measuring range fine tuning (FINE)	with the FINE knob. Am changed in two steps.	n the RANGE and adjustable ount of variation can be
Internal Calibrator (+CAL, -CAL)	Calibration value range \pm accuracy \pm (0.2% rdg + 0.	$1 \text{ to } 9,999 \text{ x10}^{-6} \text{ strain,}$
Non-linearity	Within $\pm 0.01\%$ /FS	Within ± 0.05%/FS
Frequency characteristic (W/B)	DC to 500 kHz +1, -3 dB	DC to 100 kHz +1, -3 dB
HPF	Cutoff frequency: 0.5 Hz 2-pole Bessel type (filter dro	p characteristics -12dB/oct)
Low-Pass Filter	Cutoff frequency: 10, 30, 10 4-pole Bessel type (filter dro	0, 1k, 30 kHz op characteristics -24dB/oct)
Temperature Zero-point stability Sensitivity	Within $\pm 1 \times 10^{-6}$ strain/°C, Within $\pm 0.01\%$ /°C, within	within $\pm 5 \times 10^{-6}$ strain/24h
Noise	conversion (W/B, RANGE = 1k, FINE = x1, BV = 2 V, at 120 Ω bridge) 20 × 10 ⁻⁶ strain p-p input conversion (DC to 30 kHz, RANGE = 1k, FINE = x1, BV	bridge) 20×10^{-6} strain p-p input conversion (DC to 30 kHz, RANGE = 2k, FINE = x1,
Output voltage		BV = 2 V, at 120 Ω bridge) OUTPUT2 ± 10 V ± 10 mA
Output adjustment		ously variable from 1 to
Level indication	17-dot LED display, for m	onitoring OUTPUT1, green within approx. \pm 100 mV and approx. \pm 10 5V or more
Digital display	4 1/2 digit digital displa scaling available with OUT Decimal point position ca switch on the bottom.	y, for OUTPUT2 monitor, PUT2 ADJ. n be changed by a setting
Key Lock function	Key lock ON/OFF by pres for 1 second	ssing the key lock button
Remote function	-CAL input, BAL function [ctor on the back. +CAL and Bridge Check (BRC), Cable _C), Auto-balance (resistor
Saving of setting values		
Vibration resistance	compliant with MIL-STD-	each for 10 minutes) and B10G-514.6 A, B, C, D, E) and the output,
Withstand voltage	and the case: AC 1 kV, for Between AC power input case: AC 1.5 kV, for 1 min Between DC power input case: AC 500 V, for 1 minu Between DC power input minute [AS2603]	1 minute [AS2603] and input, output, and the ute [AS2503,AS2603] and input, output, and the ute [AS2503] and input: AC 1 kV, for 1 and output, and the case:
AC power supply		240 VAC (switchable by ss when AC240V, 50/60 Hz
DC power supply	10 to 30 VDC, 7 VA or less	
Operating temperature and humidity range	-10°C to +50°C, within 20 with no condensation	
Storage temperature and humidity range	-20°C to +70°C, within 10	to 90% RH
External dimensions		(excluding protruding parts)
Weight	Approx. 1.4 kg	

Dimensions Diagram

Specifications as a voltage amplifier (only items different from strain)

ltem		AS2503	AS2603	
Input impedance		Approx. 10 M Ω + approx.	10 M Ω (at DC)	
Zero adjustment range (Auto-balance)		\pm 10 mV (input conversion value) (BV = 2 V), includes Auto-balance and fine tuning.		
Equilibrium adjustment accuracy		Within \pm 1 μ V (input conversion value), (RANGE = 1k, FINE x1, BV = 2 V)	Within $\pm 2 \mu V$ (input conversion value) (RANGE = 2k, FINE x1, BV = 2 V)	
Measurem	ent range	\pm 125 mV (RANGE = 50k, FINE = x2.5, BV = 2 V)	\pm 250 mV (RANGE=100k, FINE =x2.5, BV = 2 V)	
Gain		x10,000 (RANGE = 1k), x5,000 (2k), x2,000 (5k), x1,000 (10k), x500 (20k), x200 (50k), FINE = x1	x5,000 (RANGE = 2k), x2,000 (5k), x1,000 (10k), x500 (20k), x200 (50k), x100 (100k), FINE = x1	
Gain accur	асу	± 0.1%		
Common Mode Rejection Ratio (CMRR)		70 dB or better (50, 60 Hz) at 1 k Ω balanced input	100 dB or more (50, 60 Hz) at 1 k Ω balanced input	
Maximum allowable input voltage		± 8 VDC or AC peak		
Allowable Common Mode input voltage		\pm 5 VDC or AC peak	\pm 300 VDC or AC peak	
Internal Calibrator		Setting value: \pm 0.01 to 99.99 mV (\pm 0.01 to 59.99 mV when BV = 2 V) Accuracy: \pm (0.2% rdg + 5 μ V)		
Non-linearity		Within \pm 0.01%/FS	Within \pm 0.05%/FS	
Temperature	Zero-point	Within \pm 1 μ V/° C, within \pm 5 μ V/24h		
stability Sensitivity		Within \pm 0.01%/° C, within \pm 0.05%/24h		
Noise		(W/B, RANGE = 1k (x10,000), FINE = x1, BV = 2 V) 20 μ V p-p input conversion	50 μ V p-p input conversion (W/B, RANGE = 2k (x5,000), FINE = x1, BV = 2 V) 20 μ V p-p input conversion (DC to 30 kHz, RANGE = 2k, FINE = x1, BV = 2 V)	

[Main Unit]

Product	Model	Specifications
	AS3603	General-purpose, low bandwidth, isolated type, DC to 2 kHz (carrier wave 5 kHz)
	AS3503	General-purpose, medium-bandwidth, isolated type, DC to 5 kHz (carrier wave 12.5 kHz)
AC Strain Amplifier	AS3703	General-purpose, wideband, isolated type, DC to 10 kHz (carrier wave 25 kHz)
	AS3803	Noise-resistant, low bandwidth, isolation type, DC to 2 kHz (carrier wave 5 kHz)
	AS3903	Noise-resistant, medium-bandwidth, isolated type, DC to 5 kHz (carrier wave 12.5 kHz)
DC Strain Amplifier	AS2503	Wideband type, DC to 500 kHz, constant voltage type
	AS2603	Isolated type, DC to 100 kHz, constant voltage type

AS3000 Standard Accessories Signal cable, Screwdriver for adjustment, AC power cable, Instruction manual, Quick guide sticker AS2000 Standard Accessories Signal cable, Screwdriver for adjustment, Time-lag fuse, AC power cable, Instruction manual Note: If 4 to 20 mA output is required, the voltage output of OUTPUT2 can be changed to current output. (Please contact our sales staff.)

[Option]

Product	Model	Details
Bridge box (120 Ω)	5370A	120 Ω , with approx. 3 m cable
Bridge box (350 Ω)	5373A	350Ω , with approx. 3 m cable
	AS16-104	4 channels, approx. 3.0 kg, with AC power cable and panel fixing screws
Bench top case	AS16-105	6 channels, approx. 3.7 kg, with AC power cable and panel fixing screws
	AS16-106	8 channels, approx. 4.4 kg, with AC power cable with panel fixing screws
Rack mounted case	AS16-107	8 channels, approx. 4.5 kg, with AC power cable with panel fixing screws
Blank panel	AL13-318	For 1 slot
Unit stand	43721	For 1 unit
Fixing knurled screws	43537-010	10 pcs/set, compatible with AS, AL and AG amplifiers

[Cable]

Product	Model	Details		
AC power cable (for AS3000)	AX-KO6165-200	For unit and case, 100 V AC, 2 m long		
AC power cable (for AS2000)	0311-5044	For unit and case, 100 V	/ AC, 2.5 m long	
AC power cable (101 AS2000)	0311-5112	For unit and case, 200 V	AC, Loose cable end (3 wires), 3.5 m long	
DC power cable	AS30-507	For unit, D-sub 9pin to lo	oose cable end (2 wires), 2 m long	
DC power cable	AS30-508	For case, circular connector (female) to loose cable end (2 wires), 2.5 m long		
	AS30-504	Metal BNC to Metal BNC *1 , impedance 50 Ω , 2 m long		
Cignal apple	AS30-503	Metal BNC ^{*1)} to electrical clips [red (+), black (-)], impedance 50 Ω ,2 m long		
Signal cable	0311-2057	Metal BNC ^{*1)} to electrical clips [red (+), black (-)], impedance 50 Ω, 2 m long		
	0311-5200	Metal BNC * 1) to Isolate	d BNC, impedance 50 Ω , 2 m long	
Synchronization cable	AS30-505	Cable for synchronization between units or cases. D-Sub 9pin plug to D-sub 9 pin plug, 1.8m long		
Remote control cable	AS30-506-250	Control cable for unit or case D-Sub 9 pin plug to loose cable end (5 wires), 2.5 m long		
	AS30-501-001	AVAS30-501-001	Φ 9.6mm, 4core shielded, length 1m	Plug Plug
Relay cable * 2)	AS30-501-002	AVAS30-501-002	Φ 9.6mm, 4core shielded, length 2m	
	AS30-501-005	AVAS30-501-005	Φ 9.6mm, 4core shielded, length 5m	NDIS connector plug to plag
Extension cable ^{*2)}	AS30-502-001	AVAS30-502-001	Φ 9.6mm, 4core shielded, length 1m	Jack Plug
	AS30-502-002	AVAS30-502-002	Φ 9.6mm, 4core shielded, length 2m	
	AS30-502-005	AVAS30-502-005	Φ 9.6mm, 4core shielded, length 5m	NDIS connector jack to plag
 Common mode input voltage fr 	$r motal RNC is \pm 42$	(DC or AC poak value)		

* 1) Common mode input voltage for metal BNC is ± 42 V (DC or AC peak value)
 * 2) Cable lengths of 1 m, 2 m, 5 m, 10 m, 15 m, 20 m and 25 m are available. (Please contact our sales staff.)

[Other]

Product	Model	Standards
Traceability chart	AZ-TRB-AV	
Calibration certificate	AZ-KENSA-AS	Calibration certificate with inspection data

Product	Model	Standards
Instruction Manual	AZ-MANUAL1-EX	For AS3000 series
Instruction Manual	AZ-MANUAL1-EX	For AS2000 series

Discover Precision

A&D Company, Limited

3-23-14 Higashi-İkebukuro, Toshima-ku,Tokyo 170-0013 Japan Tel:+81 3 5391-6132 Fax:+81 3 5391-1566 http://www.aandd.jp

A&D ENGINEERING, INC.

Headquarters Office: 4622 Runway Boulevard Ann Arbor, MI 48108, U.S.A. Sales Office: 47747 Warm Springs Blvd, Fremont, CA 94539 TEL:+1 800-726-3364

A&D KOREA Limited

817, Manhattan Bldg., 33, Gukjegeumyung-ro 6-gil, Yeongdeungpo-gu, Seoul, 07331, Korea TEL:+82 2-780-4101 FAX:+82 2-782-4280

A&D Technology Trading Co.,Ltd

32CD, World Plaza, No.855 South Pudong Road, China (Shanghai) Pilot Free Trade Zone, 200120, China TEL:+86 21-3393-2340 FAX:+86 21-3393-23347

A&D INSTRUMENTS (THAILAND) LIMITED

168/16 Moo 1, Rangsit, Thanyaburi, Pathumthani 12110 Thailand TEL:+66 2-003-8911